Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics

被引:2
作者
Ryzhkov, Vitaly V. V. [1 ]
Echeistov, Vladimir V. V. [1 ,2 ]
Zverev, Aleksandr V. V. [1 ]
Baklykov, Dmitry A. A. [1 ,2 ]
Konstantinova, Tatyana [1 ]
Lotkov, Evgeny S. S. [1 ,2 ]
Ryazantcev, Pavel G. G. [1 ]
Alibekov, Ruslan Sh. [1 ]
Kuguk, Aleksey K. K. [1 ]
Aleksandrov, Andrey R. R. [2 ]
Krasko, Elisey S. S. [1 ]
Barbasheva, Anastasiya A. A. [1 ]
Ryzhikov, Ilya A. A. [1 ,2 ]
Rodionov, Ilya A. A. [1 ,2 ]
机构
[1] Bauman Moscow State Tech Univ, FMN Lab, Moscow 105005, Russia
[2] Dukhov Res Inst Automat, Moscow 127055, Russia
关键词
FLOWMETERS;
D O I
10.1039/d3lc00061c
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip. Furthermore, most of them cannot be fabricated within the same technological cycle as microfluidic channels. Here, we report on a membrane-free microfluidic thermal flow sensor (MTFS) that can be integrated into a silicon-glass microfluidic chip with a microchannel topology. We propose a membrane-free design with thin-film thermo-resistive sensitive elements isolated from microfluidic channels and a 4 '' wafer silicon-glass fabrication route. It ensures MTFS compatibility with corrosive liquids, which is critically important for biological applications. MTFS design rules for the best sensitivity and measurement range are proposed. A method for automated thermo-resistive sensitive element calibration is described. The device parameters are experimentally tested for hundreds of hours with a reference Coriolis flow sensor demonstrating a relative flow error of less than 5% within the range of 2-30 mu L min(-1) along with a sub-second time response.
引用
收藏
页码:2789 / 2797
页数:9
相关论文
共 35 条
  • [1] Thermal flow sensor for liquids and gases based on combinations of two principles
    Ashauer, M
    Glosch, H
    Hedrich, F
    Hey, N
    Sandmaier, H
    Lang, W
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 1999, 73 (1-2) : 7 - 13
  • [2] A role for microfluidic systems in precision medicine
    Ayuso, Jose M.
    Virumbrales-Munoz, Maria
    Lang, Joshua M.
    Beebe, David J.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [3] Evolutionary selection growth of silver films for low-loss nanophotonic devices
    Baburin, Aleksandr S.
    Moskalev, Dmitry O.
    Lotkov, Evgeniy S.
    Sorokina, Olga S.
    Baklykov, Dmitry A.
    Avdeev, Sergey S.
    Buzaverov, Kirill A.
    Yankovskii, Georgiy M.
    V. Baryshev, Alexander
    Ryzhikov, Ilya A.
    Rodionov, Ilya A.
    [J]. SURFACES AND INTERFACES, 2023, 39
  • [4] State-of-the-art plasmonic crystals for molecules fluorescence detection
    Baburin, Aleksandr S.
    Gritchenko, Anton S.
    Orikovsky, Nikolay A.
    Dobronosova, Alina A.
    Rodionov, Ilya A.
    Balykin, Victor, I
    Melentiev, Pavel N.
    [J]. OPTICAL MATERIALS EXPRESS, 2019, 9 (03): : 1173 - 1179
  • [5] TURBINE FLOWMETERS .2. THEORETICAL AND EXPERIMENTAL PUBLISHED INFORMATION
    BAKER, RC
    [J]. FLOW MEASUREMENT AND INSTRUMENTATION, 1993, 4 (03) : 123 - 144
  • [6] SERS-Active Substrates Nanoengineering Based on e-Beam Evaporated Self-Assembled Silver Films
    Boginskaya, Irina
    Sedova, Marina
    Baburin, Aleksandr
    Afanasev, Konstantin
    Zverev, Alexander
    Echeistov, Vladimir
    Ryzhkov, Vitaly
    Rodionov, Ilya
    Tonanaiskii, Bogdan
    Ryzhikov, Ilya
    Lagarkov, Andrey
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [7] BRODY WR, 1974, IEEE T BIO-MED ENG, VBM21, P183, DOI 10.1109/TBME.1974.324381
  • [8] A high-temperature thermopile fabrication process for thermal flow sensors
    Buchner, Rainer
    Sosna, Christoph
    Maiwald, Marcus
    Benecke, Wolfgang
    Lang, Walter
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2006, 130 : 262 - 266
  • [9] Highly Accurate Airflow Volumetric Flowmeters via pMUTs Arrays Based on Transit Time
    Chen, Xuying
    Liu, Chengwei
    Yang, Dengfei
    Liu, Xinxin
    Hu, Liang
    Xie, Jin
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2019, 28 (04) : 707 - 716
  • [10] Microfluidic Thermal Flowmeters for Drug Injection Monitoring
    Doh, Il
    Sim, Daniel
    Kim, Steve S.
    [J]. SENSORS, 2022, 22 (09)