TRFM-LS: Transformer-Based Deep Learning Method for Vessel Trajectory Prediction

被引:23
|
作者
Jiang, Dapeng [1 ,2 ]
Shi, Guoyou [1 ,2 ]
Li, Na [1 ,2 ]
Ma, Lin [1 ,2 ]
Li, Weifeng [1 ,2 ]
Shi, Jiahui [1 ,2 ]
机构
[1] Dalian Maritime Univ, Nav Coll, Dalian 116026, Peoples R China
[2] Dalian Maritime Univ, Nav Coll, Key Lab Nav Safety Guarantee Liaoning Prov, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
AIS; Transformer; deep learning; spatiotemporal; trajectory prediction; NETWORKS;
D O I
10.3390/jmse11040880
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In the context of the rapid development of deep learning theory, predicting future motion states based on time series sequence data of ship trajectories can significantly improve the safety of the traffic environment. Considering the spatiotemporal correlation of AIS data, a trajectory time window panning and smoothing filtering method is proposed for the abnormal values existing in the trajectory data. The application of this method can effectively deal with the jump values and outliers in the trajectory data, make the trajectory smooth and continuous, and ensure the temporal order and integrity of the trajectory data. In this paper, for the features of spatiotemporal data of trajectories, the LSTM structure is integrated on the basis of the deep learning Transformer algorithm framework, abbreviated as TRFM-LS. The LSTM module can learn the temporal features of spatiotemporal data in the process of computing the target sequence, while the self-attention mechanism in Transformer can solve the drawback of applying LSTM to capture the sequence information weakly at a distance. The advantage of complementarity of the fusion model in the training process of trajectory sequences with respect to the long-range dependence of temporal and spatial features is realized. Finally, in the comparative analysis section of the error metrics, by comparing with current state-of-the-art methods, the algorithm in this paper is shown to have higher accuracy in predicting time series trajectory data. The research in this paper provides an early warning information reference for autonomous navigation and autonomous collision avoidance of ships in practice.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Transformer-Based Deep Learning Method for the Prediction of Ventilator Pressure
    Fan, Ruizhe
    2022 IEEE 2ND INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING (ICICSE 2022), 2022, : 25 - 28
  • [2] Transformer-based error compensation method for air combat aircraft trajectory prediction
    Zhang B.
    Bi W.
    Zhang A.
    Mao Z.
    Yang M.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (09):
  • [3] TemproNet: A transformer-based deep learning model for seawater temperature prediction
    Chen, Qiaochuan
    Cai, Candong
    Chen, Yaoran
    Zhou, Xi
    Zhang, Dan
    Peng, Yan
    OCEAN ENGINEERING, 2024, 293
  • [4] HTTNet: hybrid transformer-based approaches for trajectory prediction
    Ge, Xianlei
    Shen, Xiaobo
    Zhou, Xuanxin
    Li, Xiaoyan
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2024, 72 (05)
  • [5] Deep-ProBind: binding protein prediction with transformer-based deep learning model
    Khan, Salman
    Noor, Sumaiya
    Awan, Hamid Hussain
    Iqbal, Shehryar
    Alqahtani, Salman A.
    Dilshad, Naqqash
    Ahmad, Nijad
    BMC BIOINFORMATICS, 2025, 26 (01):
  • [6] An Explainable Transformer-Based Deep Learning Model for the Prediction of Incident Heart Failure
    Rao, Shishir
    Li, Yikuan
    Ramakrishnan, Rema
    Hassaine, Abdelaali
    Canoy, Dexter
    Cleland, John
    Lukasiewicz, Thomas
    Salimi-Khorshidi, Gholamreza
    Rahimi, Kazem
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (07) : 3362 - 3372
  • [7] Prediction of Electric Vehicles Charging Demand: A Transformer-Based Deep Learning Approach
    Koohfar, Sahar
    Woldemariam, Wubeshet
    Kumar, Amit
    SUSTAINABILITY, 2023, 15 (03)
  • [8] A transformer-based method for vessel traffic flow forecasting
    Mandalis, Petros
    Chondrodima, Eva
    Kontoulis, Yannis
    Pelekis, Nikos
    Theodoridis, Yannis
    GEOINFORMATICA, 2025, 29 (01) : 149 - 173
  • [9] Deep Transformer-Based Asset Price and Direction Prediction
    Gezici, Abdul Haluk Batur
    Sefer, Emre
    IEEE ACCESS, 2024, 12 : 24164 - 24178
  • [10] Transfer Learning Study of Motion Transformer-based Trajectory Predictions
    Ullrich, Lars
    McMaster, Alex
    Graichen, Knut
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 110 - 117