Prediction and Verification of Parker Solar Probe Solar Wind Sources at 13.3 R⊙

被引:22
作者
Badman, S. T. [1 ]
Riley, P. [2 ]
Jones, S. I. [3 ,4 ]
Kim, T. K. [5 ]
Allen, R. C. [6 ]
Arge, C. N. [4 ]
Bale, S. D. [7 ,8 ]
Henney, C. J. [9 ]
Kasper, J. C. [10 ]
Mostafavi, P. [6 ]
Pogorelov, N. V. [5 ]
Raouafi, N. E. [6 ]
Stevens, M. L. [2 ]
Verniero, J. L. [3 ]
机构
[1] Harvard & Smithsonian, Ctr Astrophys, Cambridge, MA USA
[2] Predict Sci Inc, San Diego, CA USA
[3] NASA Goddard Space Flight Ctr, Greenbelt, MD USA
[4] Catholic Univ Amer, Washington, DC 20064 USA
[5] Univ Alabama, Huntsville, AL USA
[6] Johns Hopkins Appl Phys Lab, Laurel, MD USA
[7] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[8] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[9] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM USA
[10] BWX Technol Inc, Washington, DC USA
关键词
corona; solar wind; Parker solar probe; solar wind sources; Alfven surface; magnetic field lines; INTERPLANETARY; CORONA; MODEL; PROJECT; SPEED;
D O I
10.1029/2023JA031359
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Drawing connections between heliospheric spacecraft and solar wind sources is a vital step in understanding the evolution of the solar corona into the solar wind and contextualizing in situ timeseries. Furthermore, making advanced predictions of this linkage for ongoing heliospheric missions, such as Parker Solar Probe (Parker), is necessary for achieving useful coordinated remote observations and maximizing scientific return. The general procedure for estimating such connectivity is straightforward (i.e., magnetic field line tracing in a coronal model) but validating the resulting estimates is difficult due to the lack of an independent ground truth and limited model constraints. In its most recent orbits, Parker has reached perihelia of 13.3R(circle dot) and moreover travels extremely fast prograde relative to the solar surface, covering over 120 degrees longitude in 3 days. Here we present footpoint predictions and subsequent validation efforts for Parker Encounter 10, the first of the 13.3R(circle dot) orbits, which occurred in November 2021. We show that the longitudinal dependence of in situ plasma data from these novel orbits provides a powerful method of footpoint validation. With reference to other encounters, we also illustrate that the conditions under which source mapping is most accurate for near-ecliptic spacecraft (such as Parker) occur when solar activity is low, but also require that the heliospheric current sheet is strongly warped by mid-latitude or equatorial coronal holes. Lastly, we comment on the large-scale coronal structure implied by the Encounter 10 mapping, highlighting an empirical equatorial cut of the Alfven surface consisting of localized protrusions above unipolar magnetic separatrices.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Upstream Solar Wind Prediction up to Mars by an Operational Solar Wind Prediction System
    Wang, Jingjing
    Shi, Yurong
    Luo, Bingxian
    Liu, Siqing
    Kong, Linggao
    Ma, Jijie
    Li, Wenya
    Tang, Binbin
    Zhang, Aibing
    Li, Lei
    Shi, Liqin
    Zhong, Qiuzhen
    Chen, Yanhong
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2023, 21 (01):
  • [32] Evolution of coronal hole solar wind in the inner heliosphere: Combined observations by Solar Orbiter and Parker Solar Probe
    Perrone, D.
    Perri, S.
    Bruno, R.
    Stansby, D.
    D'Amicis, R.
    Jagarlamudi, V. K.
    Laker, R.
    Toledo-Redondo, S.
    Stawarz, J. E.
    Telloni, D.
    De Marco, R.
    Owen, C. J.
    Raines, J. M.
    Settino, A.
    Lavraud, B.
    Maksimovic, M.
    Vaivads, A.
    Phan, T. D.
    Fargette, N.
    Louarn, P.
    Zouganelis, I.
    ASTRONOMY & ASTROPHYSICS, 2022, 668
  • [33] The Ion Transition Range of Solar Wind Turbulence in the Inner Heliosphere: Parker Solar Probe Observations
    Huang, S. Y.
    Sahraoui, F.
    Andres, N.
    Hadid, L. Z.
    Yuan, Z. G.
    He, J. S.
    Zhao, J. S.
    Galtier, S.
    Zhang, J.
    Deng, X. H.
    Jiang, K.
    Yu, L.
    Xu, S. B.
    Xiong, Q. Y.
    Wei, Y. Y.
    Dudok de Wit, T.
    Bale, S. D.
    Kasper, J. C.
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 909 (01)
  • [34] Constraints on Solar Wind Density and Velocity Based on Coronal Tomography and Parker Solar Probe Measurements
    Bunting, Kaine A.
    Barnard, Luke
    Owens, Mathew J.
    Morgan, Huw
    ASTROPHYSICAL JOURNAL, 2024, 961 (01)
  • [35] Determination of Solar Wind Angular Momentum and Alfven Radius from Parker Solar Probe Observations
    Liu, Ying D.
    Chen, Chong
    Stevens, Michael L.
    Liu, Mingzhe
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 908 (02)
  • [36] Temperature Fluctuation at the Sun and Large-scale Electric Field in Solar Wind: A Challenge for the Parker Solar Probe Mission
    Pavan, J.
    Vinas, A. F.
    ASTROPHYSICAL JOURNAL, 2019, 882 (01)
  • [37] Wavelet determination of magnetohydrodynamic-range power spectral exponents in solar wind turbulence seen by Parker Solar Probe
    Wang, X.
    Chapman, S. C.
    Dendy, R. O.
    Hnat, B.
    ASTRONOMY & ASTROPHYSICS, 2023, 678
  • [38] A MODEL FOR THE SOURCES OF THE SLOW SOLAR WIND
    Antiochos, S. K.
    Mikic, Z.
    Titov, V. S.
    Lionello, R.
    Linker, J. A.
    ASTROPHYSICAL JOURNAL, 2011, 731 (02)
  • [39] Isotropization and Evolution of Energy-containing Eddies in Solar Wind Turbulence: Parker Solar Probe, Helios 1, ACE, WIND, and Voyager 1
    Cuesta, Manuel Enrique
    Chhiber, Rohit
    Roy, Sohom
    Goodwill, Joshua
    Pecora, Francesco
    Jarosik, Jake
    Matthaeus, William H.
    Parashar, Tulasi N.
    Bandyopadhyay, Riddhi
    ASTROPHYSICAL JOURNAL LETTERS, 2022, 932 (01)
  • [40] ICARUS: in-situ studies of the solar corona beyond Parker Solar Probe and Solar Orbiter
    Krasnoselskikh, Vladimir
    Tsurutani, Bruce T.
    Dudok de Wit, Thierry
    Walker, Simon
    Balikhin, Michael
    Balat-Pichelin, Marianne
    Velli, Marco
    Bale, Stuart D.
    Maksimovic, Milan
    Agapitov, Oleksiy
    Baumjohann, Wolfgang
    Berthomier, Matthieu
    Bruno, Roberto
    Cranmer, Steven R.
    de Pontieu, Bart
    Meneses, Domingos de Sousa
    Eastwood, Jonathan
    Erdelyi, Robertus
    Ergun, Robert
    Fedun, Viktor
    Ganushkina, Natalia
    Greco, Antonella
    Harra, Louise
    Henri, Pierre
    Horbury, Timothy
    Hudson, Hugh
    Kasper, Justin
    Khotyaintsev, Yuri
    Kretzschmar, Matthieu
    Krucker, Sam
    Kucharek, Harald
    Langevin, Yves
    Lavraud, Benoit
    Lebreton, Jean-Pierre
    Lepri, Susan
    Liemohn, Michael
    Louarn, Philippe
    Moebius, Eberhard
    Mozer, Forrest
    Nemecek, Zdenek
    Panasenco, Olga
    Retino, Alessandro
    Safrankova, Jana
    Scudder, Jack
    Servidio, Sergio
    Sorriso-Valvo, Luca
    Soucek, Jan
    Szabo, Adam
    Vaivads, Andris
    Vekstein, Grigory
    EXPERIMENTAL ASTRONOMY, 2022, 54 (2-3) : 277 - 315