Feasibility of Prelithiation in LiFePO4

被引:60
作者
Cao, Mengyan [1 ,2 ]
Liu, Zepeng [1 ,3 ]
Zhang, Xiao [1 ,2 ]
Yang, Lu [1 ,2 ]
Xu, Shiwei [1 ,3 ]
Weng, Suting [1 ,3 ]
Zhang, Simeng [1 ,2 ]
Li, Xiaoyun [1 ,2 ]
Li, Yejing [4 ]
Liu, Tongchao [4 ]
Gao, Yurui [2 ,5 ]
Wang, Xuefeng [1 ,2 ,3 ,6 ]
Wang, Zhaoxiang [1 ,2 ,3 ]
Chen, Liquan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China
[4] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[5] Chinese Acad Sci, Natl Ctr Nanosci & Technol, Lab Theoret & Computat Nanosci, Beijing 100190, Peoples R China
[6] Tianmu Lake Inst Adv Energy Storage Technol Co Ltd, Liyang 213300, Peoples R China
基金
中国国家自然科学基金;
关键词
chemical prelithiation; electrochemical prelithiation; lithium iron phosphate; lithium naphthaline; LI; BATTERY; METAL; EFFICIENCY;
D O I
10.1002/adfm.202210032
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium iron phosphate (LiFePO4) is widely applied as the cathode material for the energy storage Li-ion batteries due to its low cost and high cycling stability. However, the low theoretical specific capacity of LiFePO4 makes its initial capacity loss more concerning. Therefore, lithium compensation by way of prelithiation and applications of sacrificial Li-rich additives in LiFePO4 is imminent in elevating the energy density and/or prolonging the lifetime of the LiFePO4-based Li-ion batteries (LIBs). Prelithiation in LiFePO4 is herein carried out by electrochemical and chemical methods and its feasibility is proved on the basis of the electrochemical evaluations such as the initial charge capacity and the cycling stability. In addition, the site of the pre-intercalated Li-ions is found via comprehensive physical characterizations and the density functional theory (DFT) calculations. These findings open a new avenue for elevating the energy density and/or prolonging the lifetime of the high-energy-density batteries.
引用
收藏
页数:9
相关论文
共 36 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries [J].
Chen, Hao ;
Yang, Yufei ;
Boyle, David T. ;
Jeong, You Kyeong ;
Xu, Rong ;
de Vasconcelos, Luize Scalco ;
Huang, Zhuojun ;
Wang, Hansen ;
Wang, Hongxia ;
Huang, Wenxiao ;
Li, Huiqiao ;
Wang, Jiangyan ;
Gu, Hanke ;
Matsumoto, Ryuhei ;
Motohashi, Kazunari ;
Nakayama, Yuri ;
Zhao, Kejie ;
Cui, Yi .
NATURE ENERGY, 2021, 6 (08) :790-798
[3]   Dehydrogenation-driven Li metal-free prelithiation for high initial efficiency SiO-based lithium storage materials [J].
Chung, Dong Jae ;
Youn, Donghan ;
Kim, Soohwan ;
Ma, Donghyeok ;
Lee, Jiwhan ;
Jeong, Won Joon ;
Park, Eunjun ;
Kim, Joon-Sup ;
Moon, Chulsoon ;
Lee, Ji Yeong ;
Sun, Heeyoung ;
Kim, Hansu .
NANO ENERGY, 2021, 89 (89)
[4]   Decomposition of Trace Li2CO3 During Charging Leads to Cathode Interface Degradation with the Solid Electrolyte LLZO [J].
Delluva, Alexander A. ;
Kulberg-Savercool, Jonas ;
Holewinski, Adam .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (34)
[5]   In Situ Electrochemical Regeneration of Degraded LiFePO4 Electrode with Functionalized Prelithiation Separator [J].
Fan, Min ;
Meng, Qinghai ;
Chang, Xin ;
Gu, Chao-Fan ;
Meng, Xin-Hai ;
Yin, Ya-Xia ;
Li, Hongliang ;
Wan, Li-jun ;
Guo, Yu-Guo .
ADVANCED ENERGY MATERIALS, 2022, 12 (18)
[6]   Capacitive Energy Storage on Fe/Li3PO4 Grain Boundaries [J].
Guo, Xianwei ;
Fang, Xiangpeng ;
Mao, Ya ;
Wang, Zhaoxiang ;
Wu, Feng ;
Chen, Liquan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (09) :3803-3808
[7]   Reciprocal Salt Flux Growth of LiFePO4 Single Crystals with Controlled Defect Concentrations [J].
Janssen, Yuri ;
Santhanagopalan, Dhamodaran ;
Qian, Danna ;
Chi, Miaofang ;
Wang, Xiaoping ;
Hoffmann, Christina ;
Meng, Ying Shirley ;
Khalifah, Peter G. .
CHEMISTRY OF MATERIALS, 2013, 25 (22) :4574-4584
[8]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[9]   Prelithiated FeS2 cathode with alleviated volume expansion toward improved cycling performance [J].
Li, Li ;
Luo, Chun ;
Zou, Jian ;
Ran, Qiwen ;
Chen, Pengyu ;
Wang, Xin ;
Zhao, Yulin ;
Wang, Liping ;
Zheng, Jieyun ;
Niu, Xiaobin .
SOLID STATE IONICS, 2021, 368
[10]   Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial Coulombic efficiency [J].
Li, Yang ;
Qian, Yong ;
Zhou, Jie ;
Lin, Ning ;
Qian, Yitai .
NANO RESEARCH, 2022, 15 (01) :230-237