Strain-dependent grain boundary properties of n-type germanium layers

被引:2
作者
Igura, Kota [1 ]
Nozawa, Koki [1 ]
Ishiyama, Takamitsu [1 ,2 ]
Suemasu, Takashi [1 ]
Toko, Kaoru [1 ]
机构
[1] Univ Tsukuba, Inst Appl Phys, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
[2] 8 Ichiban Cho,Chiyoda Ku, Tokyo 1028472, Japan
基金
日本学术振兴会;
关键词
ELECTRICAL-PROPERTIES; GE; SILICON; SI;
D O I
10.1038/s41598-024-56282-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polycrystalline Ge thin films have attracted considerable attention as potential materials for use in various electronic and optical devices. We recently developed a low-temperature solid-phase crystallization technology for a doped Ge layer and achieved the highest electron mobility in a polycrystalline Ge thin film. In this study, we investigated the effects of strain on the crystalline and electrical properties of n-type polycrystalline Ge layers. By inserting a GeO x interlayer directly under Ge and selecting substrates with different coefficients of thermal expansion, we modulated the strain in the polycrystalline Ge layer, ranging from approximately 0.6% (tensile) to - 0.8% (compressive). Compressive strain enlarged the grain size to 12 mu m, but decreased the electron mobility. The temperature dependence of the electron mobility clarified that changes in the potential barrier height of the grain boundary caused this behavior. Furthermore, we revealed that the behavior of the grain boundary barrier height with respect to strain is opposite for the n- and p-types. This result strongly suggests that this phenomenon is due to the piezoelectric effect. These discoveries will provide guidelines for improving the performance of Ge devices and useful physical knowledge of various polycrystalline semiconductor thin films.
引用
收藏
页数:7
相关论文
共 53 条
[1]   Varistor piezotronics: Mechanically tuned conductivity in varistors [J].
Baraki, Raschid ;
Novak, Nikola ;
Hofstaetter, Michael ;
Supancic, Peter ;
Roedel, Juergen ;
Froemling, Till .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (08)
[2]   Defect levels of dangling bonds in silicon and germanium through hybrid functionals [J].
Broqvist, Peter ;
Alkauskas, Audrius ;
Pasquarello, Alfredo .
PHYSICAL REVIEW B, 2008, 78 (07)
[3]   Germanium MOSFET devices: Advances in materials understanding, process development, and electrical performance [J].
Brunco, D. P. ;
De Jaeger, B. ;
Eneman, G. ;
Mitard, J. ;
Hellings, G. ;
Satta, A. ;
Terzieva, V. ;
Souriau, L. ;
Leys, F. E. ;
Pourtois, G. ;
Houssa, M. ;
Winderickx, G. ;
Vrancken, E. ;
Sioncke, S. ;
Opsomer, K. ;
Nicholas, G. ;
Caymax, M. ;
Stesmans, A. ;
Van Steenbergen, J. ;
Mertens, P. W. ;
Meuris, M. ;
Heyns, M. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (07) :H552-H561
[4]   DETERMINATION OF GRAIN-BOUNDARY DEFECT-STATE DENSITIES FROM TRANSPORT MEASUREMENTS [J].
EVANS, PV ;
NELSON, SF .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (06) :3605-3611
[5]   Band structure, deformation potentals, and carrier mobility in strained Si, Ge, and SiGe alloys [J].
Fischetti, MV ;
Laux, SE .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (04) :2234-2252
[6]  
Grimvall G., 1999, Thermophysical Properties of Materials
[7]   Vacancies and self-interstitials in germanium observed by perturbed angular correlation spectroscopy [J].
Haesslein, H ;
Sielemann, R ;
Zistl, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (12) :2626-2629
[8]   Thin-film tunneling transistors on flexible plastic substrates based on stress-assisted lateral growth of polycrystalline germanium [J].
Hekmatshoar, B ;
Mohajerzadeh, S ;
Shahrjerdi, D ;
Robertson, MD .
APPLIED PHYSICS LETTERS, 2004, 85 (06) :1054-1056
[9]   A crystalline germanium flexible thin-film transistor [J].
Higashi, H. ;
Nakano, M. ;
Kudo, K. ;
Fujita, Y. ;
Yamada, S. ;
Kanashima, T. ;
Tsunoda, I. ;
Nakashima, H. ;
Hamaya, K. .
APPLIED PHYSICS LETTERS, 2017, 111 (22)
[10]   Acceptor defects in polycrystalline Ge layers evaluated using linear regression analysis [J].
Imajo, Toshifumi ;
Ishiyama, Takamitsu ;
Nozawa, Koki ;
Suemasu, Takashi ;
Toko, Kaoru .
SCIENTIFIC REPORTS, 2022, 12 (01)