Quaternion Cross-Modality Spatial Learning for Multi-Modal Medical Image Segmentation

被引:4
作者
Chen, Junyang [1 ]
Huang, Guoheng [1 ]
Yuan, Xiaochen [2 ]
Zhong, Guo [3 ]
Zheng, Zewen [1 ]
Pun, Chi-Man [4 ]
Zhu, Jian [1 ]
Huang, Zhixin [5 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
[3] Guangdong Univ Foreign Studies, Sch Informat Sci & Technol, Guangzhou 510420, Peoples R China
[4] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
[5] Guangdong Second Prov Gen Hosp, Dept Neurol, Guangzhou 510317, Peoples R China
关键词
Quaternions; Convolution; Three-dimensional displays; Biomedical imaging; Image segmentation; Feature extraction; Lesions; Multi-modal medical image; Quaternion; Spatial dependency; Cross-modality; CONVOLUTIONAL NEURAL-NETWORKS; TUMOR SEGMENTATION; 3D; TRANSFORMER; CNN;
D O I
10.1109/JBHI.2023.3346529
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, the Deep Neural Networks (DNNs) have had a large impact on imaging process including medical image segmentation, and the real-valued convolution of DNN has been extensively utilized in multi-modal medical image segmentation to accurately segment lesions via learning data information. However, the weighted summation operation in such convolution limits the ability to maintain spatial dependence that is crucial for identifying different lesion distributions. In this paper, we propose a novel Quaternion Cross-modality Spatial Learning (Q-CSL) which explores the spatial information while considering the linkage between multi-modal images. Specifically, we introduce to quaternion to represent data and coordinates that contain spatial information. Additionally, we propose Quaternion Spatial-association Convolution to learn the spatial information. Subsequently, the proposed De-level Quaternion Cross-modality Fusion (De-QCF) module excavates inner space features and fuses cross-modality spatial dependency. Our experimental results demonstrate that our approach compared to the competitive methods perform well with only 0.01061 M parameters and 9.95G FLOPs.
引用
收藏
页码:1412 / 1423
页数:12
相关论文
共 60 条
[1]  
Akbar A. S., 2021, PROC INTMICCAI BRAIN, P182
[2]  
Baid U, 2021, Arxiv, DOI arXiv:2107.02314
[3]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]   QUATERNION NEURAL NETWORKS FOR 3D SOUND SOURCE LOCALIZATION IN REVERBERANT ENVIRONMENTS [J].
Celsi, Michela Ricciardi ;
Scardapane, Simone ;
Comminiello, Danilo .
PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
[6]  
Chen SH, 2019, Arxiv, DOI arXiv:1904.00625
[7]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[8]  
Comminiello D, 2019, INT CONF ACOUST SPEE, P8533, DOI [10.1109/icassp.2019.8682711, 10.1109/ICASSP.2019.8682711]
[9]   Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network [J].
Cui, Shaoguo ;
Mao, Lei ;
Jiang, Jingfeng ;
Liu, Chang ;
Xiong, Shuyu .
JOURNAL OF HEALTHCARE ENGINEERING, 2018, 2018
[10]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302