Deep learning radiomics based prediction of axillary lymph node metastasis in breast cancer

被引:14
作者
Liu, Han [1 ]
Zou, Liwen [2 ]
Xu, Nan [3 ]
Shen, Haiyun [1 ]
Zhang, Yu [2 ]
Wan, Peng [4 ]
Wen, Baojie [1 ]
Zhang, Xiaojing [5 ]
He, Yuhong [1 ]
Gui, Luying [6 ]
Kong, Wentao [1 ]
机构
[1] Nanjing Univ, Nanjing Drum Tower Hosp, Affiliated Hosp, Dept Ultrasound,Med Sch, Nanjing 210002, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210008, Peoples R China
[3] Med Sch Nanjing Univ, Jinling Hosp, Gen Hosp Eastern Theater Command, Dept Ultrasound, Nanjing 210002, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, MIIT Key Lab Pattern Anal & Machine Intelligence, Nanjing 211106, Peoples R China
[5] Nanjing Univ Chinese Med, Dept Ultrasound, Taizhou Hosp, Taizhou 225300, Peoples R China
[6] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
关键词
INTERNATIONAL EXPERT CONSENSUS; SHEAR-WAVE ELASTOGRAPHY; SENTINEL NODE; PRIMARY THERAPY; BIOPSY; CLASSIFICATION; ULTRASOUND; ONCOLOGY; TEXTURE; SURGERY;
D O I
10.1038/s41523-024-00628-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
This study aimed to develop and validate a deep learning radiomics nomogram (DLRN) for the preoperative evaluation of axillary lymph node (ALN) metastasis status in patients with a newly diagnosed unifocal breast cancer. A total of 883 eligible patients with breast cancer who underwent preoperative breast and axillary ultrasound were retrospectively enrolled between April 1, 2016, and June 30, 2022. The training cohort comprised 621 patients from Hospital I; the external validation cohorts comprised 112, 87, and 63 patients from Hospitals II, III, and IV, respectively. A DLR signature was created based on the deep learning and handcrafted features, and the DLRN was then developed based on the signature and four independent clinical parameters. The DLRN exhibited good performance, yielding areas under the receiver operating characteristic curve (AUC) of 0.914, 0.929, and 0.952 in the three external validation cohorts, respectively. Decision curve and calibration curve analyses demonstrated the favorable clinical value and calibration of the nomogram. In addition, the DLRN outperformed five experienced radiologists in all cohorts. This has the potential to guide appropriate management of the axilla in patients with breast cancer, including avoiding overtreatment.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Shear wave elastography for characterization of breast lesions: Shearlet transform and local binary pattern histogram techniques [J].
Acharya, U. Rajendra ;
Ng, Wei Lin ;
Rahmat, Kartini ;
Sudarshan, Vidya K. ;
Koh, Joel E. W. ;
Tan, Jen Hong ;
Hagiwara, Yuki ;
Gertych, Arkadiusz ;
Fadzli, Farhana ;
Yeong, Chai Hong ;
Ng, Kwan Hoong .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 91 :13-20
[2]  
American Institute of Ultrasound in Medicine, 2009, J Ultrasound Med, V28, P105
[3]   Internal mammary sentinel lymph node biopsy in clinical practice [J].
Asadi, Mehdi ;
Krag, David .
INTERNATIONAL JOURNAL OF SURGERY, 2016, 36 :332-334
[4]   Shear-wave Elastography Improves the Specificity of Breast US: The BE1 Multinational Study of 939 Masses [J].
Berg, Wendie A. ;
Cosgrove, David O. ;
Dore, Caroline J. ;
Schaefer, Fritz K. W. ;
Svensson, William E. ;
Hooley, Regina J. ;
Ohlinger, Ralf ;
Mendelson, Ellen B. ;
Balu-Maestro, Catherine ;
Locatelli, Martina ;
Tourasse, Christophe ;
Cavanaugh, Barbara C. ;
Juhan, Valerie ;
Stavros, A. Thomas ;
Tardivon, Anne ;
Gay, Joel ;
Henry, Jean-Pierre ;
Cohen-Bacrie, Claude .
RADIOLOGY, 2012, 262 (02) :435-449
[5]   Doctor, what are my chances of having a positive sentinel node? A validated nomogram for risk estimation [J].
Bevilacqua, Jose Luiz B. ;
Kattan, Michael W. ;
Fey, Jane V. ;
Cody, Hiram S., III ;
Borgen, Patrick I. ;
Van Zee, Kimberly J. .
JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (24) :3670-3679
[6]   Cost Modeling of Preoperative Axillary Ultrasound and Fine-Needle Aspiration to Guide Surgery for Invasive Breast Cancer [J].
Boughey, Judy C. ;
Moriarty, James P. ;
Degnim, Amy C. ;
Gregg, Melissa S. ;
Egginton, Jason S. ;
Long, Kirsten Hall .
ANNALS OF SURGICAL ONCOLOGY, 2010, 17 (04) :953-958
[7]   Management of the Axilla in Early-Stage Breast Cancer: Ontario Health (Cancer Care Ontario) and ASCO Guideline [J].
Brackstone, Muriel ;
Baldassarre, Fulvia G. ;
Perera, Francisco E. ;
Cil, Tulin ;
Mac Gregor, Mariana Chavez ;
Dayes, Ian S. ;
Engel, Jay ;
Horton, Janet K. ;
King, Tari A. ;
Kornecki, Anat ;
George, Ralph ;
SenGupta, Sandip K. ;
Spears, Patricia A. ;
Eisen, Andrea F. .
JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (27) :3056-+
[8]   ASO Visual Abstract: Nonsentinel Axillary Lymph-Node Status in Clinically Node-Negative Early Breast Cancer After Primary Systemic Therapy and Positive Sentinel Lymph-Node-A Predictive Model Proposal [J].
Cebrecos, Isaac ;
Mension, Eduard ;
Alonso, Inmaculada ;
Castillo, Helena ;
Sanfeliu, Esther ;
Vidal-Sicart, Sergi ;
Ganau, Sergi ;
Vidal, Maria ;
Schettini, Francesco .
ANNALS OF SURGICAL ONCOLOGY, 2023, 30 (09) :5707-5708
[9]   Differentiating axillary lymph node metastasis in invasive breast cancer patients: A comparison of radiomic signatures from multiparametric breast MR sequences [J].
Chai, Ruimei ;
Ma, He ;
Xu, Mingjie ;
Arefan, Dooman ;
Cui, Xiaoyu ;
Liu, Yi ;
Zhang, Lina ;
Wu, Shandong ;
Xu, Ke .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (04) :1125-1132
[10]  
Cichetti DV., 1994, Psychol Assess, V6, P284, DOI DOI 10.1037/1040-3590.6.4.284