Incremental Isolation Forest to Handle Concept Drift in Anomaly Detection

被引:0
|
作者
Ahlawat, Nidhi [1 ]
Awekar, Amit [1 ]
机构
[1] Indian Inst Technol Guwahati, Gauhati, India
关键词
anomaly detection; incremental algorithm; isolation forest;
D O I
10.1145/3632410.3632486
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Isolation Forest (iForest) is a well-known model for anomaly detection task. It works by identifying regions corresponding to existing anomalies in the data. With the arrival of new data, concept drift can occur in two ways. First, anomalies can occur in the new regions of the feature space. Second, existing anomalies can become normal with the addition of new data. We observe that the performance of Isolation Forest severely degrades in both these scenarios. Current works fail to tune the existing Isolation Forest to adapt to the concept drift. We propose Incremental Isolation Forest to quickly update the existing Isolation Forest in response to the arrival of new data. Initial experimental results using three real-world datasets indicate that our approach achieves significant time savings with minimal loss in anomaly detection performance.
引用
收藏
页码:582 / 583
页数:2
相关论文
共 50 条
  • [21] Situational Anomaly Detection in Multimedia Data under Concept Drift
    Kumari, Pratibha
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2969 - 2973
  • [22] Anomaly and change point detection for time series with concept drift
    Liu, Jiayi
    Yang, Donghua
    Zhang, Kaiqi
    Gao, Hong
    Li, Jianzhong
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 3229 - 3252
  • [23] Drift-detection Based Incremental Ensemble for Reacting to Different Kinds of Concept Drift
    Li, Zeng
    Xiong, Yan
    Huang, Wenchao
    5TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM 2019), 2019, : 107 - 114
  • [24] Anomaly and change point detection for time series with concept drift
    Jiayi Liu
    Donghua Yang
    Kaiqi Zhang
    Hong Gao
    Jianzhong Li
    World Wide Web, 2023, 26 : 3229 - 3252
  • [25] Anomaly Detection in Semiconductor Cleanroom Using Isolation Forest
    Jahan, Israt
    Alam, Md Morshed
    Ahmed, Md Faisal
    Jang, Yeong Min
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 795 - 797
  • [26] Anomaly Detection in Streaming Data using Isolation Forest
    Kareem, Mohammed Shaker
    Muhammed, Lamia AbedNoor
    PROCEEDINGS 2024 SEVENTH INTERNATIONAL WOMEN IN DATA SCIENCE CONFERENCE AT PRINCE SULTAN UNIVERSITY, WIDS-PSU 2024, 2024, : 223 - 228
  • [27] Leveraging an Isolation Forest to Anomaly Detection and Data Clustering
    Yepmo, Veronne
    Smits, Gregory
    Lesot, Marie -Jeanne
    Pivert, Olivier
    DATA & KNOWLEDGE ENGINEERING, 2024, 151
  • [28] Isolation Mondrian Forest for Batch and Online Anomaly Detection
    Ma, Haoran
    Ghojogh, Benyamin
    Samad, Maria N.
    Zheng, Dongyu
    Crowley, Mark
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3051 - 3058
  • [29] CADI: Contextual Anomaly Detection using an Isolation Forest
    Yepmo, Veronne
    Smits, Gregory
    Lesot, Marie-Jeanne
    Pivert, Olivier
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 935 - 944
  • [30] Subspace analysis isolation forest for hyperspectral anomaly detection
    Huang Y.
    Xue Y.
    Li P.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (03): : 416 - 425