Characterization of Li+ Transport through the Organic-Inorganic Interface by using Electrochemical Impedance Spectroscopy

被引:2
作者
Naboulsi, Agathe [1 ,2 ,3 ]
Nguyen, Giao T. M. [1 ]
Franger, Sylvain [4 ]
Fichet, Odile [1 ]
Laberty-Robert, Christel [2 ,3 ]
机构
[1] CY Cergy Paris Univ, LPPI, F-95000 Paris, France
[2] Sorbonne Universite, CNRS, Lab Chim Matiere Condensee Paris, LCMCP, 4 Pl Jussieu, F-75005 Paris, France
[3] RS2E Reseau Francais Stockage Electrochim Energie, CNRS 3459, F-80039 Amiens 1, France
[4] Univ Paris Saclay, F-91400 Saclay, France
关键词
Li+ interface transport; impedance spectroscopy; transmission line model (TLM); ION-TRANSPORT; BATTERIES; ELECTROLYTES; MODEL;
D O I
10.1149/1945-7111/ad2595
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Understanding Li+ transport at polymer||inorganic interfaces is crucial for developing composite electrolytes in solid-state batteries. In our investigation, we employed impedance spectroscopy and established a multilayer methodology for assessing Li+ transport at this interface. The inorganic phase chosen was Li6.25Al0.25La3Zr2O12 (Al-LLZO), and the organic phase comprised a Poly(ethylene oxide) (PEO) network with dangling chains. Li+ incorporation in the polymer, as a free either salt or associated with anion grafting onto the PEO network, was explored. Additionally, the PEO network was either pressure-adhered to the inorganic surface (ex-situ configuration) or synthesized onto the Al-LLZO surfaces (in situ configuration) to investigate processing effects on Li+ transport. Using a Transmission Line Model for impedance data analysis, our study identified two key elements governing Li+ transport at the interface: R-i, representing resistance along the ionic pathway, and R-t and C-t, describing distributed resistance and capacitance within the interface. We observed that R-i is influenced by the polymerization process in the presence of Al-LLZO ceramic, while R-t remains constant regardless of the synthesis method. This suggests varying Li+ concentrations at the interphase in the in situ configuration, while interface/interphase heterogeneity remains consistent across configurations. The estimated activation energy indicates more energetically favorable direct Li+ transport in the in-situ configuration.
引用
收藏
页数:8
相关论文
共 21 条
  • [1] Space-Charge Effects at the Li7La3Zr2O12/Poly(ethylene oxide) Interface
    Brogioli, Doriano
    Langer, Frederieke
    Kun, Robert
    La Mantia, Fabio
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) : 11999 - 12007
  • [2] One-pot synthesis of crosslinked polymer electrolyte beyond 5V oxidation potential for all-solid-state lithium battery
    Chen, Shaojie
    Wang, Junye
    Wei, Zhenyao
    Zhang, Zhihua
    Deng, Yonghong
    Yao, Xiayin
    Xu, Xiaoxiong
    [J]. JOURNAL OF POWER SOURCES, 2019, 431 : 1 - 7
  • [3] De Levie R, 1965, Electrochimica Acta, V10, P113, DOI [DOI 10.1016/0013-4686(65)87012-8, 10.1016/0013-4686(65)87012-8]
  • [4] Controlling Ionic Transport through the PEO-LiTFSI/LLZTO Interface
    Gupta, Arushi
    Sakamoto, Jeff
    [J]. ELECTROCHEMICAL SOCIETY INTERFACE, 2019, 28 (02) : 63 - 69
  • [5] Li2CO3: A Critical Issue for Developing Solid Garnet Batteries
    Huo, Hanyu
    Luo, Jing
    Thangadurai, Venkataraman
    Guo, Xiangxin
    Nan, Ce-Wen
    Sun, Xueliang
    [J]. ACS ENERGY LETTERS, 2020, 5 (01) : 252 - 262
  • [6] Irvine J. T. S., 1990, Advanced Materials, V2, P132, DOI 10.1002/adma.19900020304
  • [7] Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer
    Isaac, James Alfred
    Mangani, Lea Rose
    Devaux, Didier
    Bouchet, Renaud
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (11) : 13158 - 13168
  • [8] Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.141, 10.1038/NENERGY.2016.141]
  • [9] Lowering the Interfacial Resistance in Li6.4La3Zr1.4Ta0.6O12| Poly(Ethylene Oxide) Composite Electrolytes
    Kuhnert, Eveline
    Ladenstein, Lukas
    Jodlbauer, Anna
    Slugovc, Christian
    Trimmel, Gregor
    Wilkening, H. Martin R.
    Rettenwander, Daniel
    [J]. CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (10):
  • [10] Impedance spectroscopy on porous materials:: A general model and application to graphite electrodes of lithium-ion batteries
    La Mantia, Fabio
    Vetter, Jens
    Novak, Petr
    [J]. ELECTROCHIMICA ACTA, 2008, 53 (12) : 4109 - 4121