Feature extraction and representation learning of 3D point cloud data

被引:5
|
作者
Si, Hongying [1 ]
Wei, Xianyong [2 ]
机构
[1] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu 476000, Henan, Peoples R China
[2] Shangqiu Polytech, Coll Comp Engn, Shangqiu 476000, Henan, Peoples R China
关键词
Deep learning; 3D data; Point cloud; Represent learning; Feature extraction;
D O I
10.1016/j.imavis.2023.104890
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Three-dimensional point cloud data serves as a critical source of information in various real-world application domains, such as computer vision, robotics, geographic information systems, and medical image processing. Due to the discrete and unordered nature of point clouds, applying 2D image feature extractors directly to the extraction of 3D point cloud features is challenging. Therefore, we propose a novel variational feature component extraction method called PointFEA. This paper aims to research and propose a series of methods to enhance the feature extraction and representation learning of 3D point cloud data. Firstly, in terms of feature extraction, local neighborhood encoding is combined with the local latent representation of point clouds to obtain more correlated point cloud features. Secondly, in the domain of point cloud representation learning, the multi-scale representation learning method maps point cloud data into a high-dimensional space to better capture critical features and adapt to different granularities of point cloud data. Lastly, features of different dimensions are input into a cross-fusion transformer to obtain local attention coefficients. We validate our methods on commonly used point cloud datasets, and the experiments demonstrate the effectiveness of our approach, achieving accuracies of 94.8% on ModelNet40 and 89.1% on ScanObjectNN.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Sparse 3D Point Clouds Segmentation Considering 2D Image Feature Extraction with Deep Learning
    Li, Yusheng
    Tian, Yong
    Tian, Jiandong
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [42] Quality Judgment of 3D Face Point Cloud Based on Feature Fusion
    Gao, Gong
    Liu, Hong
    Yang, Hongyu
    IEEE ACCESS, 2022, 10 : 106513 - 106519
  • [43] Local feature guidance framework for robust 3D point cloud registration
    Zikang Liu
    Kai He
    Dazhuang Zhang
    Lei Wang
    The Visual Computer, 2023, 39 : 6459 - 6472
  • [44] Hybrid Spatial and Deep Learning-based Point Cloud Compression with Layered Representation on 3D Shape
    Kimata, Hideaki
    ITE TRANSACTIONS ON MEDIA TECHNOLOGY AND APPLICATIONS, 2023, 11 (04): : 138 - 145
  • [45] Point cloud 3D parent surface reconstruction and weld seam feature extraction for robotic grinding path planning
    Wang, Xiangfei
    Zhang, Xiaoqiang
    Ren, Xukai
    Li, Lufeng
    Feng, Hengjian
    He, Yanbing
    Chen, Huabin
    Chen, Xiaoqi
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 107 (1-2) : 827 - 841
  • [46] 3D Object Recognition and Pose Estimation From Point Cloud Using Stably Observed Point Pair Feature
    Li, Deping
    Wang, Hanyun
    Liu, Ning
    Wang, Xiaoming
    Xu, Jin
    IEEE ACCESS, 2020, 8 : 44335 - 44345
  • [47] Point cloud 3D parent surface reconstruction and weld seam feature extraction for robotic grinding path planning
    Xiangfei Wang
    Xiaoqiang Zhang
    Xukai Ren
    Lufeng Li
    Hengjian Feng
    Yanbing He
    Huabin Chen
    Xiaoqi Chen
    The International Journal of Advanced Manufacturing Technology, 2020, 107 : 827 - 841
  • [48] 3D convolutional auto-encoder based multi-scale feature extraction for point cloud registration
    Ma, Hao
    Yin, De-Yu
    Liu, Jing-Bin
    Chen, Rui-Zhi
    OPTICS AND LASER TECHNOLOGY, 2022, 149
  • [49] PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
    Zhao, Genping
    Zhang, Weiguang
    Peng, Yeping
    Wu, Heng
    Wang, Zhuowei
    Cheng, Lianglun
    REMOTE SENSING, 2021, 13 (21)
  • [50] WSDesc: Weakly Supervised 3D Local Descriptor Learning for Point Cloud Registration
    Li, Lei
    Fu, Hongbo
    Ovsjanikov, Maks
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (07) : 3368 - 3379