Feature extraction and representation learning of 3D point cloud data

被引:5
|
作者
Si, Hongying [1 ]
Wei, Xianyong [2 ]
机构
[1] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu 476000, Henan, Peoples R China
[2] Shangqiu Polytech, Coll Comp Engn, Shangqiu 476000, Henan, Peoples R China
关键词
Deep learning; 3D data; Point cloud; Represent learning; Feature extraction;
D O I
10.1016/j.imavis.2023.104890
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Three-dimensional point cloud data serves as a critical source of information in various real-world application domains, such as computer vision, robotics, geographic information systems, and medical image processing. Due to the discrete and unordered nature of point clouds, applying 2D image feature extractors directly to the extraction of 3D point cloud features is challenging. Therefore, we propose a novel variational feature component extraction method called PointFEA. This paper aims to research and propose a series of methods to enhance the feature extraction and representation learning of 3D point cloud data. Firstly, in terms of feature extraction, local neighborhood encoding is combined with the local latent representation of point clouds to obtain more correlated point cloud features. Secondly, in the domain of point cloud representation learning, the multi-scale representation learning method maps point cloud data into a high-dimensional space to better capture critical features and adapt to different granularities of point cloud data. Lastly, features of different dimensions are input into a cross-fusion transformer to obtain local attention coefficients. We validate our methods on commonly used point cloud datasets, and the experiments demonstrate the effectiveness of our approach, achieving accuracies of 94.8% on ModelNet40 and 89.1% on ScanObjectNN.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A Unified Feature Representation and Learning Framework for 3D Shape
    MU Panpan
    ZHANG Sanyuan
    PAN Xiang
    HONG Zhenjie
    Chinese Journal of Electronics, 2019, 28 (05) : 993 - 999
  • [32] Point-BLS: 3D Point Cloud Classification Combining Deep Learning and Broad Learning System
    Chen, Yixuan
    Fu, Mengyin
    Shen, Kai
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2810 - 2815
  • [33] Feature Extraction from 3D Point Clouds Based on Linear Intercept Ratio
    Fu Siyong
    Wu Lushen
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (09)
  • [34] LinK3D: Linear Keypoints Representation for 3D LiDAR Point Cloud
    Cui, Yunge
    Zhang, Yinlong
    Dong, Jiahua
    Sun, Haibo
    Chen, Xieyuanli
    Zhu, Feng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2128 - 2135
  • [35] DCCN: A dual-cross contrastive neural network for 3D point cloud representation learning
    Wu, Xiaopeng
    Shi, Guangsi
    Zhao, Zexing
    Li, Mingjie
    Gao, Xiaojun
    Yan, Xiaoli
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [36] Deep Learning for 3D Classification Based on Point Cloud with Local Structure
    Song, Yanan
    Li, Xinyu
    Gao, Liang
    2019 2ND IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP), 2019, : 405 - 409
  • [37] Learning 3D Shape Latent for Point Cloud Completion
    Chen, Zhikai
    Long, Fuchen
    Qiu, Zhaofan
    Yao, Ting
    Zhou, Wengang
    Luo, Jiebo
    Mei, Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8717 - 8729
  • [38] Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud Analysis
    Zhang, Qijian
    Hou, Junhui
    Qian, Yue
    Zeng, Yiming
    Zhang, Juyong
    He, Ying
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9726 - 9742
  • [39] 3D point cloud denoising method based on global feature guidance
    Yang, Wenming
    He, Zhouyan
    Song, Yang
    Ma, Yeling
    VISUAL COMPUTER, 2024, 40 (09) : 6137 - 6153
  • [40] Local feature guidance framework for robust 3D point cloud registration
    Liu, Zikang
    He, Kai
    Zhang, Dazhuang
    Wang, Lei
    VISUAL COMPUTER, 2023, 39 (12) : 6459 - 6472