Feature extraction and representation learning of 3D point cloud data

被引:5
|
作者
Si, Hongying [1 ]
Wei, Xianyong [2 ]
机构
[1] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu 476000, Henan, Peoples R China
[2] Shangqiu Polytech, Coll Comp Engn, Shangqiu 476000, Henan, Peoples R China
关键词
Deep learning; 3D data; Point cloud; Represent learning; Feature extraction;
D O I
10.1016/j.imavis.2023.104890
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Three-dimensional point cloud data serves as a critical source of information in various real-world application domains, such as computer vision, robotics, geographic information systems, and medical image processing. Due to the discrete and unordered nature of point clouds, applying 2D image feature extractors directly to the extraction of 3D point cloud features is challenging. Therefore, we propose a novel variational feature component extraction method called PointFEA. This paper aims to research and propose a series of methods to enhance the feature extraction and representation learning of 3D point cloud data. Firstly, in terms of feature extraction, local neighborhood encoding is combined with the local latent representation of point clouds to obtain more correlated point cloud features. Secondly, in the domain of point cloud representation learning, the multi-scale representation learning method maps point cloud data into a high-dimensional space to better capture critical features and adapt to different granularities of point cloud data. Lastly, features of different dimensions are input into a cross-fusion transformer to obtain local attention coefficients. We validate our methods on commonly used point cloud datasets, and the experiments demonstrate the effectiveness of our approach, achieving accuracies of 94.8% on ModelNet40 and 89.1% on ScanObjectNN.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Masked Autoencoders in 3D Point Cloud Representation Learning
    Jiang, Jincen
    Lu, Xuequan
    Zhao, Lizhi
    Dazeley, Richard
    Wang, Meili
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 820 - 831
  • [2] Masked Structural Point Cloud Modeling to Learning 3D Representation
    Yamada, Ryosuke
    Tadokoro, Ryu
    Qiu, Yue
    Kataoka, Hirokatsu
    Satoh, Yutaka
    IEEE ACCESS, 2024, 12 : 142291 - 142305
  • [3] Joint representation learning for text and 3D point cloud
    Huang, Rui
    Pan, Xuran
    Zheng, Henry
    Jiang, Haojun
    Xie, Zhifeng
    Wu, Cheng
    Song, Shiji
    Huang, Gao
    PATTERN RECOGNITION, 2024, 147
  • [4] Rethinking Masked Representation Learning for 3D Point Cloud Understanding
    Wang, Chuxin
    Zha, Yixin
    He, Jianfeng
    Yang, Wenfei
    Zhang, Tianzhu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 247 - 262
  • [5] Faster Dynamic Graph CNN: Faster Deep Learning on 3D Point Cloud Data
    Hong, Jinseok
    Kim, Keeyoung
    Lee, Hongchul
    IEEE ACCESS, 2020, 8 : 190529 - 190538
  • [6] A FEATURE-BASED DEEP LEARNING APPROACH FOR THE EXTRACTION OF GROUND POINTS FROM 3D POINT CLOUDS
    Dogan, Y.
    Ok, A. O.
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 503 - 508
  • [7] A Unified Feature Representation and Learning Framework for 3D Shape
    Mu, Panpan
    Zhang, Sanyuan
    Pan, Xiang
    Hong, Zhenjie
    CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (05) : 993 - 999
  • [8] PointSurFace: Discriminative point cloud surface feature extraction for 3D face recognition
    Yang, Junpeng
    Li, Qiufu
    Shen, Linlin
    PATTERN RECOGNITION, 2024, 156
  • [9] A 3D Point Cloud Feature Identification Method Based on Improved Point Feature Histogram Descriptor
    Wang, Chunxiao
    Xiong, Xiaoqing
    Zhang, Xiaoying
    Liu, Lu
    Tan, Wu
    Liu, Xiaojuan
    Yang, Houqun
    ELECTRONICS, 2023, 12 (17)
  • [10] Feature Visualization for 3D Point Cloud Autoencoders
    Rios, Thiago
    van Stein, Bas
    Menzel, Stefan
    Baeck, Thomas
    Sendhoff, Bernhard
    Wollstadt, Patricia
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,