Deep learning model for extensive smartphone-based diagnosis and triage of cataracts and multiple corneal diseases

被引:14
作者
Ueno, Yuta [1 ]
Oda, Masahiro [2 ,3 ]
Yamaguchi, Takefumi [4 ]
Fukuoka, Hideki [5 ]
Nejima, Ryohei [6 ]
Kitaguchi, Yoshiyuki [7 ]
Miyake, Masahiro [8 ]
Akiyama, Masato [9 ]
Miyata, Kazunori [6 ]
Kashiwagi, Kenji [10 ]
Maeda, Naoyuki [7 ]
Shimazaki, Jun [4 ]
Noma, Hisashi [11 ]
Mori, Kensaku [2 ,3 ,12 ]
Oshika, Tetsuro [1 ]
机构
[1] Univ Tsukuba, Dept Ophthalmol, Tsukuba, Ibaraki, Japan
[2] Nagoya Univ, Informat Technol Ctr, Nagoya, Aichi, Japan
[3] Nagoya Univ, Grad Sch Informat, Nagoya, Aichi, Japan
[4] Tokyo Dent Coll Ichikawa Gen Hosp, Dept Ophthalmol, Ichikawa, Japan
[5] Kyoto Prefectural Univ Med, Dept Ophthalmol, Kyoto, Japan
[6] Miyata Eye Hosp, Miyakonojo, Japan
[7] Osaka Univ, Dept Ophthalmol, Grad Sch Med, Osaka, Japan
[8] Kyoto Univ, Dept Ophthalmol & Vusual Sci, Grad Sch Med, Kyoto, Japan
[9] Kyushu Univ, Dept Ocular Pathol & Imaging Sci, Fukuoka, Japan
[10] Univ Yamanashi, Dept Ophthalmol, Kofu, Yamanashi, Japan
[11] Inst Stat Math, Dept Data Sci, Tokyo, Japan
[12] Natl Inst Informat, Tokyo, Japan
关键词
Cornea; Ocular surface; ARTIFICIAL-INTELLIGENCE; VISION IMPAIRMENT; BLINDNESS;
D O I
10.1136/bjo-2023-324488
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Aim To develop an artificial intelligence (AI) algorithm that diagnoses cataracts/corneal diseases from multiple conditions using smartphone images. Methods This study included 6442 images that were captured using a slit-lamp microscope (6106 images) and smartphone (336 images). An AI algorithm was developed based on slit-lamp images to differentiate 36 major diseases (cataracts and corneal diseases) into 9 categories. To validate the AI model, smartphone images were used for the testing dataset. We evaluated AI performance that included sensitivity, specificity and receiver operating characteristic (ROC) curve for the diagnosis and triage of the diseases. Results The AI algorithm achieved an area under the ROC curve of 0.998 (95% CI, 0.992 to 0.999) for normal eyes, 0.986 (95% CI, 0.978 to 0.997) for infectious keratitis, 0.960 (95% CI, 0.925 to 0.994) for immunological keratitis, 0.987 (95% CI, 0.978 to 0.996) for cornea scars, 0.997 (95% CI, 0.992 to 1.000) for ocular surface tumours, 0.993 (95% CI, 0.984 to 1.000) for corneal deposits, 1.000 (95% CI, 1.000 to 1.000) for acute angle-closure glaucoma, 0.992 (95% CI, 0.985 to 0.999) for cataracts and 0.993 (95% CI, 0.985 to 1.000) for bullous keratopathy. The triage of referral suggestion using the smartphone images exhibited high performance, in which the sensitivity and specificity were 1.00 (95% CI, 0.478 to 1.00) and 1.00 (95% CI, 0.976 to 1.000) for 'urgent', 0.867 (95% CI, 0.683 to 0.962) and 1.00 (95% CI, 0.971 to 1.000) for 'semi-urgent', 0.853 (95% CI, 0.689 to 0.950) and 0.983 (95% CI, 0.942 to 0.998) for 'routine' and 1.00 (95% CI, 0.958 to 1.00) and 0.896 (95% CI, 0.797 to 0.957) for 'observation', respectively. Conclusions The AI system achieved promising performance in the diagnosis of cataracts and corneal diseases.
引用
收藏
页码:1406 / 1413
页数:8
相关论文
共 29 条
[1]  
Clopper CJ, 1934, BIOMETRIKA, V26, P404, DOI 10.2307/2331986
[2]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[3]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[4]   Deep learning algorithms for automatic detection of pterygium using anterior segment photographs from slit-lamp and hand-held cameras [J].
Fang, Xiaoling ;
Deshmukh, Mihir ;
Chee, Miao Li ;
Soh, Zhi-Da ;
Teo, Zhen Ling ;
Thakur, Sahil ;
Goh, Jocelyn Hui Lin ;
Liu, Yu-Chi ;
Husain, Rahat ;
Mehta, Jodhbir ;
Wong, Tien Yin ;
Cheng, Ching-Yu ;
Rim, Tyler Hyungtaek ;
Tham, Yih-Chung .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2022, 106 (12) :1642-1647
[5]   Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis [J].
Flaxman, Seth R. ;
Bourne, Rupert R. A. ;
Resnikoff, Serge ;
Ackland, Peter ;
Braithwaite, Tasanee ;
Cicinelli, Maria V. ;
Das, Aditi ;
Jonas, Jost B. ;
Keeffe, Jill ;
Kempen, John H. ;
Leasher, Janet ;
Limburg, Hans ;
Naidoo, Kovin ;
Pesudovs, Konrad ;
Silvester, Alex ;
Stevens, Gretchen A. ;
Tahhan, Nina ;
Wong, Tien Y. ;
Taylor, Hugh R. .
LANCET GLOBAL HEALTH, 2017, 5 (12) :E1221-E1234
[6]   Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies [J].
Freeman, Karoline ;
Dinnes, Jacqueline ;
Chuchu, Naomi ;
Takwoingi, Yemisi ;
Bayliss, Sue E. ;
Matin, Rubeta N. ;
Jain, Abhilash ;
Walter, Fiona M. ;
Williams, Hywel C. ;
Deeks, Jonathan J. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 368
[7]   Deep learning for identifying corneal diseases from ocular surface slit-lamp photographs [J].
Gu, Hao ;
Guo, Youwen ;
Gu, Lei ;
Wei, Anji ;
Xie, Shirong ;
Ye, Zhengqiang ;
Xu, Jianjiang ;
Zhou, Xingtao ;
Lu, Yi ;
Liu, Xiaoqing ;
Hong, Jiaxu .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   The practical implementation of artificial intelligence technologies in medicine [J].
He, Jianxing ;
Baxter, Sally L. ;
Xu, Jie ;
Xu, Jiming ;
Zhou, Xingtao ;
Zhang, Kang .
NATURE MEDICINE, 2019, 25 (01) :30-36
[9]   Hashing as Tie-Aware Learning to Rank [J].
He, Kun ;
Cakir, Fatih ;
Bargal, Sarah Adel ;
Sclaroff, Stan .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4023-4032
[10]   Deployment of Artificial Intelligence in Real-World Practice: Opportunity and Challenge [J].
He, Mingguang ;
Li, Zhixi ;
Liu, Chi ;
Shi, Danli ;
Tan, Zachary .
ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2020, 9 (04) :299-307