Implementation of artificial intelligence models in magnetic resonance imaging with focus on diagnosis of rheumatoid arthritis and axial spondyloarthritis: narrative review

被引:3
作者
Nicoara, Andreea-Iulia [1 ]
Sas, Lorena-Mihaela [2 ,3 ]
Bita, Cristina Elena [4 ]
Dinescu, Stefan Cristian [4 ]
Vreju, Florentin Ananu [4 ]
机构
[1] Univ Med & Pharm Craiova, Craiova, Romania
[2] Craiova Emergency Cty Clin Hosp, Radiol & Med Imaging Lab, Craiova, Romania
[3] Univ Med & Pharm Craiova, Dept Human Anat, Craiova, Romania
[4] Univ Med & Pharm Craiova, Dept Rheumatol, Craiova, Romania
关键词
artificial intelligence; machine learning; deep learning; magnetic resonance imaging; rheumatoid arthritis; axial spondyloarthritis; BONE-MARROW EDEMA; SPACE NARROWING SCORE; MRI; QUANTIFICATION; SYNOVITIS; SEGMENTATION; EROSIONS; JOINTS; SACROILIITIS; VALIDATION;
D O I
10.3389/fmed.2023.1280266
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Early diagnosis in rheumatoid arthritis (RA) and axial spondyloarthritis (axSpA) is essential to initiate timely interventions, such as medication and lifestyle changes, preventing irreversible joint damage, reducing symptoms, and improving long-term outcomes for patients. Since magnetic resonance imaging (MRI) of the wrist and hand, in case of RA and MRI of the sacroiliac joints (SIJ) in case of axSpA can identify inflammation before it is clinically discernible, this modality may be crucial for early diagnosis. Artificial intelligence (AI) techniques, together with machine learning (ML) and deep learning (DL) have quickly evolved in the medical field, having an important role in improving diagnosis, prognosis, in evaluating the effectiveness of treatment and monitoring the activity of rheumatic diseases through MRI. The improvements of AI techniques in the last years regarding imaging interpretation have demonstrated that a computer-based analysis can equal and even exceed the human eye. The studies in the field of AI have investigated how specific algorithms could distinguish between tissues, diagnose rheumatic pathology and grade different signs of early inflammation, all of them being crucial for tracking disease activity. The aim of this paper is to highlight the implementation of AI models in MRI with focus on diagnosis of RA and axSpA through a literature review.
引用
收藏
页数:12
相关论文
共 86 条
  • [1] Artificial intelligence to analyze magnetic resonance imaging in rheumatology
    Adams, Lisa C.
    Bressem, Keno K.
    Ziegeler, Katharina
    Vahldiek, Janis L.
    Poddubnyy, Denis
    [J]. JOINT BONE SPINE, 2024, 91 (03)
  • [2] Automatic quantification of tenosynovitis on MRI of the wrist in patients with early arthritis: a feasibility study
    Aizenberg, Evgeni
    Shamonin, Denis P.
    Reijnierse, Monique
    van der Helm-van Mil, Annette H. M.
    Stoel, Berend C.
    [J]. EUROPEAN RADIOLOGY, 2019, 29 (08) : 4477 - 4484
  • [3] Automatic quantification of bone marrow edema on MRI of the wrist in patients with early arthritis: A feasibility study
    Aizenberg, Evgeni
    Roex, Edgar A. H.
    Nieuwenhuis, Wouter P.
    Mangnus, Lukas
    van der Helm-van Mil, Annette H. M.
    Reijnierse, Monique
    Bloem, Johan L.
    Lelieveldt, Boudewijn P. F.
    Stoel, Berend C.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (02) : 1127 - 1134
  • [4] Quantification of Bone Marrow Edema by MRI of the Sacroiliac Joints in Patients Diagnosed with Axial Spondyloarthritis: Results from the ESPeranza Cohort
    Almodovar, R.
    Bueno, A.
    Monco, C. Garcia
    De Miguel, E.
    Tornero, C.
    Moreno, M.
    Gratacos, J.
    Zarco, P.
    Mazzucchelli, R.
    [J]. SCANDINAVIAN JOURNAL OF RHEUMATOLOGY, 2022, 51 (05) : 374 - 381
  • [5] A deep learning model for the diagnosis of sacroiliitis according to Assessment of SpondyloArthritis International Society classification criteria with magnetic resonance imaging
    Bordner, Adrien
    Aouad, Theodore
    Medina, Clementina Lopez
    Yang, Sisi
    Molto, Anna
    Talbot, Hugues
    Dougados, Maxime
    Feydy, Antoine
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (7-8) : 373 - 383
  • [6] Application of artificial intelligence to imaging interpretations in the musculoskeletal area: Where are we? Where are we going?
    Boussona, Valerie
    Benoista, Nicolas
    Guetata, Pierre
    Attane, Gregoire
    Salvatc, Cecile
    Perronnea, Laetitia
    [J]. JOINT BONE SPINE, 2023, 90 (01)
  • [7] Deep Learning Detects Changes Indicative of Axial Spondyloarthritis at MRI of Sacroiliac Joints
    Bressem, Keno K.
    Adams, Lisa C.
    Proft, Fabian
    Hermann, Kay Geert A.
    Diekhoff, Torsten
    Spiller, Laura
    Niehues, Stefan M.
    Makowski, Marcus R.
    Hamm, Bernd
    Protopopov, Mikhail
    Rodriguez, Valeria Rios
    Haibel, Hildurn
    Rademacher, Judith
    Torgutalp, Murat
    Lambert, Robert G.
    Baraliakos, Xenofon
    Maksymowych, Walter P.
    Vahldiek, Janis L.
    Poddubnyy, Denis
    [J]. RADIOLOGY, 2022, 305 (03) : 655 - 665
  • [8] Automated Pipeline to Generate Anatomically Accurate Patient-Specific Biomechanical Models of Healthy and Pathological FSUs
    Caprara, Sebastiano
    Carrillo, Fabio
    Snedeker, Jess G.
    Farshad, Mazda
    Senteler, Marco
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [9] Deep Learning: A Primer for Radiologists
    Chartrand, Gabriel
    Cheng, Phillip M.
    Vorontsov, Eugene
    Drozdzal, Michal
    Turcotte, Simon
    Pal, Christopher J.
    Kadoury, Samuel
    Tang, An
    [J]. RADIOGRAPHICS, 2017, 37 (07) : 2113 - 2131
  • [10] Current Applications and Future Impact of Machine Learning in Radiology
    Choy, Garry
    Khalilzadeh, Omid
    Michalski, Mark
    Do, Synho
    Samir, Anthony E.
    Pianykh, Oleg S.
    Geis, J. Raymond
    Pandharipande, Pari V.
    Brink, James A.
    Dreyer, Keith J.
    [J]. RADIOLOGY, 2018, 288 (02) : 318 - 328