Chromosome-level genome assembly of the Asian spongy moths Lymantria dispar asiatica

被引:2
作者
Xu, Zhe [1 ]
Bai, Jianyang [2 ,3 ,4 ]
Zhang, Yue [2 ]
Li, Lu [2 ]
Min, Mengru [2 ]
Cao, Jingyu [2 ]
Cao, Jingxin [2 ]
Xu, Yanchun [1 ]
Li, Fei [3 ,4 ]
Ma, Ling [2 ]
机构
[1] Northeast Forestry Univ, Coll Wildlife & Protected Area, Harbin, Peoples R China
[2] Northeast Forestry Univ, Coll Forestry, Dept Forest Protect, Harbin, Peoples R China
[3] Zhejiang Univ, Inst Insect Sci, Coll Agr & Biotechnol, State Key Lab Rice Biol, Hangzhou, Peoples R China
[4] Zhejiang Univ, Inst Insect Sci, Coll Agr & Biotechnol, Minist Agr & Rural Affairs,Key Lab Mol Biol Crop P, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
HI-C; GYPSY MOTHS; RECONSTRUCTION; ANNOTATION;
D O I
10.1038/s41597-023-02823-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Asian spongy moth, Lymantria dispar asiatica, is one of the most devastating forestry defoliators. The absence of a high-quality genome limited the understanding of its adaptive evolution. Here, we conducted the first chromosome-level genome assembly of L. dispar asiatica using PacBio HIFI long reads, Hi-C sequencing reads and transcriptomic data. The total assembly size is 997.59 Mb, containing 32 chromosomes with a GC content of 38.91% and a scaffold N50 length of 35.42 Mb. The BUSCO assessment indicated a completeness estimate of 99.4% for this assembly. A total of 19,532 protein-coding genes was predicted. Our study provides a valuable genomics resource for studying the mechanisms of adaptive evolution and facilitate an efficient control of L. dispar asiatica.
引用
收藏
页数:6
相关论文
共 37 条
  • [1] [Anonymous], 2023, NCBI Multiple Sequence Alignment Viewer
  • [2] Temporospatial modulation ofLymantria disparimmune system against an entomopathogenic fungal infection
    Bai, Jianyang
    Xu, Zhe
    Li, Lu
    Ma, Wei
    Xu, Letian
    Ma, Ling
    [J]. PEST MANAGEMENT SCIENCE, 2020, 76 (12) : 3982 - 3989
  • [3] Hi-C: A comprehensive technique to capture the conformation of genomes
    Belton, Jon-Matthew
    McCord, Rachel Patton
    Gibcus, Johan Harmen
    Naumova, Natalia
    Zhan, Ye
    Dekker, Job
    [J]. METHODS, 2012, 58 (03) : 268 - 276
  • [4] The cost of gypsy moth sex in the city
    Bigsby, Kevin M.
    Ambrose, Mark J.
    Tobin, Patrick C.
    Sills, Erin O.
    [J]. URBAN FORESTRY & URBAN GREENING, 2014, 13 (03) : 459 - 468
  • [5] Boukouvala M. C., 2022, Insects, V13
  • [6] eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale
    Cantalapiedra, Carlos P.
    Hernandez-Plaza, Ana
    Letunic, Ivica
    Bork, Peer
    Huerta-Cepas, Jaime
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2021, 38 (12) : 5825 - 5829
  • [7] DNA Barcoding of Gypsy Moths From China (Lepidoptera: Erebidae) Reveals New Haplotypes and Divergence Patterns Within Gypsy Moth Subspecies
    Chen, Fang
    Luo, Youqing
    Keena, Melody A.
    Wu, Ying
    Wu, Peng
    Shi, Juan
    [J]. JOURNAL OF ECONOMIC ENTOMOLOGY, 2016, 109 (01) : 366 - 374
  • [8] fastp: an ultra-fast all-in-one FASTQ preprocessor
    Chen, Shifu
    Zhou, Yanqing
    Chen, Yaru
    Gu, Jia
    [J]. BIOINFORMATICS, 2018, 34 (17) : 884 - 890
  • [9] Haplotype-resolved assembly of diploid genomes without parental data
    Cheng, Haoyu
    Jarvis, Erich D.
    Fedrigo, Olivier
    Koepfli, Klaus-Peter
    Urban, Lara
    Gemmell, Neil J.
    Li, Heng
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (09) : 1332 - +
  • [10] Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm
    Cheng, Haoyu
    Concepcion, Gregory T.
    Feng, Xiaowen
    Zhang, Haowen
    Li, Heng
    [J]. NATURE METHODS, 2021, 18 (02) : 170 - +