Research progress of machine-learning algorithm for formation pore pressure prediction

被引:1
|
作者
Pan, Haoyu [1 ]
Deng, Song [1 ]
Li, Chaowei [1 ]
Sun, Yanshuai [1 ]
Zhao, Yanhong [2 ]
Shi, Lin [1 ]
Hu, Chao [1 ]
机构
[1] Changzhou Univ, Coll Petr Engn, Changzhou 213000, Peoples R China
[2] Kunlun Digital Technol Co Ltd, Beijing, Peoples R China
关键词
formation pore pressure; intelligent optimization algorithm; machine learning; multiple variables; petroleum exploration; ARTIFICIAL-INTELLIGENCE; NEURAL-NETWORKS; GRADIENT;
D O I
10.1080/10916466.2023.2299711
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Formation pore pressure is one of the most important basic data in petroleum exploration and development. The traditional prediction model of formation pore pressure relies on artificial experience and is highly subjective, so it seldom considers the influence multiple variables characteristics of formation pore pressure. In recent years, machine learning has been applied in lithology, reservoir, complex drilling conditions, formation pore pressure, and other fields. This article introduces the research progress and general process of machine learning algorithm in formation pore pressure prediction in recent years. In this study, the intelligent optimization algorithm is used to optimize the machine learning model and realize the intelligent prediction method of formation pore pressure. The results show that support vector regression (SVR) obtained the best prediction performance with the determination coefficient of 0.996. At the same time, this study reflects the importance of intelligent optimization algorithm to machine learning model optimization accuracy. This method provides a new idea for using multiple variables formation pore pressure in the future.
引用
收藏
页码:341 / 359
页数:19
相关论文
共 50 条
  • [21] Groundwater Prediction Using Machine-Learning Tools
    Hussein, Eslam A.
    Thron, Christopher
    Ghaziasgar, Mehrdad
    Bagula, Antoine
    Vaccari, Mattia
    ALGORITHMS, 2020, 13 (11)
  • [22] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [23] Anxiety onset in adolescents: a machine-learning prediction
    Alice V. Chavanne
    Marie Laure Paillère Martinot
    Jani Penttilä
    Yvonne Grimmer
    Patricia Conrod
    Argyris Stringaris
    Betteke van Noort
    Corinna Isensee
    Andreas Becker
    Tobias Banaschewski
    Arun L. W. Bokde
    Sylvane Desrivières
    Herta Flor
    Antoine Grigis
    Hugh Garavan
    Penny Gowland
    Andreas Heinz
    Rüdiger Brühl
    Frauke Nees
    Dimitri Papadopoulos Orfanos
    Tomáš Paus
    Luise Poustka
    Sarah Hohmann
    Sabina Millenet
    Juliane H. Fröhner
    Michael N. Smolka
    Henrik Walter
    Robert Whelan
    Gunter Schumann
    Jean-Luc Martinot
    Eric Artiges
    Molecular Psychiatry, 2023, 28 : 639 - 646
  • [24] Anxiety onset in adolescents: a machine-learning prediction
    Chavanne, Alice
    Paillere Martinot, Marie Laure
    Penttilae, Jani
    Grimmer, Yvonne
    Conrod, Patricia
    Stringaris, Argyris
    van Noort, Betteke
    Isensee, Corinna
    Becker, Andreas
    Banaschewski, Tobias
    Bokde, Arun L. W.
    Desrivieres, Sylvane
    Flor, Herta
    Grigis, Antoine
    Garavan, Hugh
    Gowland, Penny
    Heinz, Andreas
    Bruehl, Ruediger
    Nees, Frauke
    Orfanos, Dimitri Papadopoulos
    Paus, Tomas
    Poustka, Luise
    Hohmann, Sarah S.
    Millenet, Sabina
    Froehner, Juliane
    Smolka, Michael
    Walter, Henrik
    Whelan, Robert
    Schumann, Gunter
    Martinot, Jean-Luc
    Artiges, Eric
    MOLECULAR PSYCHIATRY, 2023, 28 (02) : 639 - 646
  • [25] Prediction and understanding of AIE effect by quantum mechanics-aided machine-learning algorithm
    Qiu, Jia
    Wang, Kun
    Lian, Zhouyang
    Yang, Xing
    Huang, Wenhui
    Qin, Anjun
    Wang, Qian
    Tian, Jie
    Tang, Benzhong
    Zhang, Shuixing
    CHEMICAL COMMUNICATIONS, 2018, 54 (57) : 7955 - 7958
  • [26] Machine-learning intervention progress in the field of organic waste composting: Simulation, prediction, optimization, and challenges
    Huang L.-T.
    Hou J.-Y.
    Liu H.-T.
    Waste Management, 2024, 178 : 155 - 167
  • [27] Machine-learning intervention progress in the field of organic waste composting: Simulation, prediction, optimization, and challenges
    Huang, Li-ting
    Hou, Jia-yi
    Liu, Hong-tao
    WASTE MANAGEMENT, 2024, 178 : 155 - 167
  • [28] High blood pressure prediction based on AAA++ using machine-learning algorithms
    Nimmala, Satyanarayana
    Ramadevi, Y.
    Sahith, R.
    Cheruku, Ramalingaswamy
    COGENT ENGINEERING, 2018, 5 (01): : 1 - 12
  • [29] Machine-learning prediction of the formation of atomic gold wires by mechanically controlled break junctions
    Ghosh, Aishwaryo
    Pabi, Biswajit
    Pal, Atindra Nath
    Saha-Dasgupta, Tanusri
    NANOSCALE, 2023, 15 (42) : 17045 - 17054
  • [30] Research Progress of Machine Learning in Deep Foundation Pit Deformation Prediction
    Wang, Xiang
    Qin, Zhichao
    Bai, Xiaoyu
    Hao, Zengming
    Yan, Nan
    Han, Jianyong
    BUILDINGS, 2025, 15 (06)