Data-Driven Modeling for Transonic Aeroelastic Analysis

被引:9
作者
Fonzi, Nicola [1 ]
Brunton, Steven L. [2 ]
Fasel, Urban [3 ]
机构
[1] Polytech Univ Milan, Dept Aerosp Sci & Technol, I-20156 Milan, Italy
[2] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[3] Imperial Coll, Dept Aeronaut, London SW7, England
来源
JOURNAL OF AIRCRAFT | 2024年 / 61卷 / 02期
基金
美国国家科学基金会;
关键词
Aeroelastic Analysis; Uncertainty Quantification; Eigensystem Realization Algorithm; Shock Waves; Proper Orthogonal Decomposition; Structural Dynamics and Characterization; CFD Codes; Data Science; Machine Learning; IDENTIFICATION; DECOMPOSITION; SYSTEMS;
D O I
10.2514/1.C037409
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Aeroelasticity in the transonic regime is challenging because of the strongly nonlinear phenomena involved in the formation of shock waves and flow separation. In this work, we introduce a computationally efficient framework for accurate transonic aeroelastic analysis. We use dynamic mode decomposition with control to extract surrogate models from high-fidelity computational fluid dynamics (CFD) simulations. Instead of identifying models of the full flowfield or focusing on global performance indices, we directly predict the pressure distribution on the body surface. The learned surrogate models provide information about the system's stability and can be used for control synthesis and response studies. Specific techniques are introduced to avoid spurious instabilities of the aerodynamic model. We use the high-fidelity CFD code SU2 to generate data and test our method on the benchmark supercritical wing. Our Python-based software is fully open source and will be included in the SU2 package to streamline the workflow from defining the high-fidelity aerodynamic model to creating a surrogate model for flutter analysis.
引用
收藏
页码:625 / 637
页数:13
相关论文
共 49 条
[1]  
AePW3, 2022, NASA
[2]   A DOUBLET-LATTICE METHOD FOR CALCULATING LIFT DISTRIBUTIONS ON OSCILLATING SURFACES IN SUBSONIC FLOWS [J].
ALBANO, E ;
RODDEN, WP .
AIAA JOURNAL, 1969, 7 (02) :279-&
[3]   Multioutput Autoregressive Aeroelastic System Identification and Flutter Prediction [J].
Argaman, Matan ;
Raveh, Daniella E. .
JOURNAL OF AIRCRAFT, 2019, 56 (01) :30-42
[4]   Variable Projection Methods for an Optimized Dynamic Mode Decomposition [J].
Askham, Travis ;
Kutz, J. Nathan .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01) :380-416
[5]   Convolution/Volterra Reduced-Order Modeling for Flutter and LCO Predictions in Highly Nonlinear Systems [J].
Brown, Cameron ;
McGowan, Greg ;
Cooley, Kilian ;
Dees, Joe ;
Josey, Tim ;
Dowell, Earl H. ;
Thomas, Jeffrey P. .
AIAA SCITECH 2022 FORUM, 2022,
[6]   Discovering governing equations from data by sparse identification of nonlinear dynamical systems [J].
Brunton, Steven L. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) :3932-3937
[7]   State-space model identification and feedback control of unsteady aerodynamic forces [J].
Brunton, Steven L. ;
Dawson, Scott T. M. ;
Rowley, Clarence W. .
JOURNAL OF FLUIDS AND STRUCTURES, 2014, 50 :253-270
[8]   Reduced-order unsteady aerodynamic models at low Reynolds numbers [J].
Brunton, Steven L. ;
Rowley, Clarence W. ;
Williams, David R. .
JOURNAL OF FLUID MECHANICS, 2013, 724 :203-233
[9]   Mesh deformation based on radial basis function interpolation [J].
de Boer, A. ;
van der Schoot, M. S. ;
Bijl, H. .
COMPUTERS & STRUCTURES, 2007, 85 (11-14) :784-795
[10]  
Dowell E. H., 1973, AIAA Journal, V11, P1586, DOI 10.2514/3.50642