On minimum spanning trees for random Euclidean bipartite graphs

被引:0
作者
Correddu, Mario [1 ]
Trevisan, Dario [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Pisa, Italy
关键词
Euclidean functionals; minimum spanning tree; geometric probability; ALGORITHM; ASYMPTOTICS; GROWTH;
D O I
10.1017/S0963548323000445
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the minimum spanning tree problem on a weighted complete bipartite graph K-nR,K- nB whose n= n(R) + n(B) vertices are random, i.i.d. uniformly distributed points in the unit cube in d dimensions and edge weights are the p-th power of their Euclidean distance, with p > 0. In the large n limit with n(R)/n -> alpha(R) and 0 < alpha(R) < 1, we show that the maximum vertex degree of the tree grows logarithmically, in contrast with the classical, non-bipartite, case, where a uniform bound holds depending on d only. Despite this difference, for p < d, we are able to prove that the total edge costs normalized by the rate n(1-p/d) converge to a limiting constant that can be represented as a series of integrals, thus extending a classical result of Avram and Bertsimas to the bipartite case and confirming a conjecture of Riva, Caracciolo and Malatesta.
引用
收藏
页码:319 / 350
页数:32
相关论文
共 32 条
[1]   ON OPTIMAL MATCHINGS [J].
AJTAI, M ;
KOMLOS, J ;
TUSNADY, G .
COMBINATORICA, 1984, 4 (04) :259-264
[2]   ASYMPTOTICS FOR EUCLIDEAN MINIMAL SPANNING-TREES ON RANDOM POINTS [J].
ALDOUS, D ;
STEELE, JM .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 92 (02) :247-258
[3]   A PDE approach to a 2-dimensional matching problem [J].
Ambrosio, Luigi ;
Stra, Federico ;
Trevisan, Dario .
PROBABILITY THEORY AND RELATED FIELDS, 2019, 173 (1-2) :433-477
[4]  
[Anonymous], 1992, Ann. Appl. Probab.
[5]  
Asano T., 1988, Proceedings of the Fourth Annual Symposium on Computational Geometry, P252, DOI 10.1145/73393.73419
[6]   Combinatorial Optimization Over Two Random Point Sets [J].
Barthe, Franck ;
Bordenave, Charles .
SEMINAIRE DE PROBABILITES XLV, 2013, 2078 :483-535
[7]  
Beardwood J., 1959, MATH P CAMB PHILOS S, VVolume 55, P299, DOI DOI 10.1017/S0305004100034095
[8]   EXTRAPOLATION AND INTERPOLATION OF QUASI-LINEAR OPERATORS ON MARTINGALES [J].
BURKHOLDER, DL ;
GUNDY, RF .
ACTA MATHEMATICA UPPSALA, 1970, 124 (3-4) :249-+
[9]   Exact value for the average optimal cost of the bipartite traveling salesman and two-factor problems in two dimensions [J].
Capelli, Riccardo ;
Caracciolo, Sergio ;
Di Gioacchino, Andrea ;
Malatesta, Enrico M. .
PHYSICAL REVIEW E, 2018, 98 (03)
[10]   Scaling hypothesis for the Euclidean bipartite matching problem [J].
Caracciolo, S. ;
Lucibello, C. ;
Parisi, G. ;
Sicuro, G. .
PHYSICAL REVIEW E, 2014, 90 (01)