A mini review on metal-organic framework-based electrode materials for capacitive deionization

被引:28
|
作者
Khan, M. Shahnawaz [1 ]
Leong, Zhi Yi [1 ]
Li, Dong-Sheng [2 ]
Qiu, Jianbei [3 ]
Xu, Xuhui [3 ]
Yang, Hui Ying [1 ]
机构
[1] Singapore Univ Technol & Design, Pillar Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
[2] China Three Gorges Univ, Key Lab Inorgan Nonmetall Crystalline & Energy Co, Coll Mat & Chem Engn, Yichang 443002, Peoples R China
[3] Kunming Univ Sci & Technol, Key Lab Adv Mat Yunnan Prov, Kunming 650093, Yunnan, Peoples R China
关键词
POROUS CARBON POLYHEDRA; DYE ADSORPTION; HIERARCHICAL CARBON; PERFORMANCE; MOF; DESALINATION; WATER; REMOVAL; DESIGN; HYBRID;
D O I
10.1039/d3nr03993e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Capacitive deionization (CDI) is an electrochemical method of extracting ions from solution at potentials below electrolysis. It has various applications ranging from water remediation and desalination to heavy metal removal and selective resource recovery. A CDI device applies an electrical charge across two porous electrodes to attract and remove ions without producing waste products. It is generally considered environmentally friendly and promising for sustainability, yet ion removal efficiency still falls short of more established filtration methods. Commercially available activated carbon is typically used for CDI, and its ion adsorption capacity is low at approximately 20-30 mg g-1. Recently, much interest has been in the highly porous and well-structured family of materials known as metal-organic frameworks (MOFs). Most MOFs are poor conductors of electricity and cannot be directly used to make electrodes. A common workaround is to pyrolyze the MOF to convert its organic components to carbon while maintaining its underlying microstructure. However, most MOF-derived materials only retain partial microstructure after pyrolysis and cannot inherit the robust porosity of the parent MOFs. This review provides a systematic breakdown of structure-performance relationships between a MOF-derived material and its CDI performance based on recent works. This review also serves as a starting point for researchers interested in developing MOF-derived materials for CDI applications. A fresh perspective of MOF-based electrode materials for better capacitive deionization (CDI) performance towards salt or brackish water.
引用
收藏
页码:15929 / 15949
页数:21
相关论文
共 50 条
  • [1] A review of metal-organic framework-derived carbon electrode materials for capacitive deionization
    Weng, Jia-ze
    Wang, Shi-yong
    Zhang, Pei-xin
    Li, Chang-ping
    Wang, Gang
    NEW CARBON MATERIALS, 2021, 36 (01) : 117 - 129
  • [2] Modification of Metal-Organic Framework-Derived Nanocarbons for Enhanced Capacitive Deionization Performance: A Mini-Review
    Lin, Peng
    Liao, Maoxin
    Yang, Tao
    Sheng, Xinran
    Wu, Yue
    Xu, Xingtao
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [3] Porous carbon derived from Metal-organic framework (MOF) for capacitive deionization electrode
    Chang, Limin
    Li, Jiarun
    Duan, Xiaoyue
    Liu, Wei
    ELECTROCHIMICA ACTA, 2015, 176 : 956 - 964
  • [4] The electrode materials in flow-electrode capacitive deionization desalination: a mini review
    Jiang, Yu-Xin
    Zhang, Wen-Chao
    Deng, Yu-Mei
    Cao, Jing-Xiao
    Asare, Justice Annor
    Alhassan, Sikpaam Issaka
    Zhang, Fang-Li
    Wang, Ping
    Wang, Hai-Ying
    RARE METALS, 2025,
  • [5] Research Progress on Metal-Organic Framework-Based Electrode Materials for Supercapacitors
    Zhu, Yin
    Su, Peng
    Wang, Jiemin
    Wang, Xu
    CRYSTALS, 2023, 13 (11)
  • [6] Electronically conductive metal-organic framework-based materials
    Kung, Chung-Wei
    Han, Po-Chun
    Chuang, Cheng-Hsun
    Wu, Kevin C. -W.
    APL MATERIALS, 2019, 7 (11)
  • [7] Applications of metal-organic framework-based bioelectrodes
    Aggarwal, Vidushi
    Solanki, Shipra
    Malhotra, Bansi D.
    CHEMICAL SCIENCE, 2022, 13 (30) : 8727 - 8743
  • [8] Metal-Organic Framework-Based Materials for Solar Water Splitting
    Li, Xianlong
    Wang, Zhiliang
    Wang, Lianzhou
    SMALL SCIENCE, 2021, 1 (05):
  • [9] Research Progress of Carbon Materials Derived from the Zn-Based Metal-Organic Frameworks in Capacitive Deionization
    San, Shuo
    Feng, Bingqi
    Xu, Zhouchao
    Yu, Jian
    Cao, Zheng
    Fan, Yang
    Zhang, Shupeng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (10)
  • [10] Recent Progress and Perspectives on Metal-Organic Framework-Based Electrode Materials for Metal-Ion Batteries and Supercapacitors
    Zhao, Min
    Tong, Shengfu
    ENERGY & FUELS, 2024, 38 (15) : 13796 - 13818