Low-dimensional linear representations of mapping class groups

被引:0
|
作者
Korkmaz, Mustafa [1 ,2 ]
机构
[1] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkiye
[2] Max Planck Inst Math, Bonn, Germany
关键词
BRAID-GROUPS; HOMEOMORPHISMS; SUBGROUP; HOMOLOGY; SURFACE;
D O I
10.1112/topo.12305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S$S$ be a compact orientable surface of genus g$g$ with marked points in the interior. Franks-Handel (Proc. Amer. Math. Soc. 141 (2013) 2951-2962) proved that if n<2g$n<2g$ then the image of a homomorphism from the mapping class group Mod(S)${\rm Mod}(S)$ of S$S$ to GL(n,C)${\rm GL}(n,{\mathbb {C}})$ is trivial if g & GT;3$g\geqslant 3$ and is finite cyclic if g=2$g=2$. The first result is our own proof of this fact. Our second main result shows that for g & GT;3$g\geqslant 3$ up to conjugation there are only two homomorphisms from Mod(S)${\rm Mod}(S)$ to GL(2g,C)${\rm GL}(2g,{\mathbb {C}})$: the trivial homomorphism and the standard symplectic representation. Our last main result shows that the mapping class group has no faithful linear representation in dimensions less than or equal to 3g-3$3g-3$. We provide many applications of our results, including the finiteness of homomorphisms from mapping class groups of nonorientable surfaces to GL(n,C)${\rm GL}(n,{\mathbb {C}})$, the triviality of homomorphisms from the mapping class groups to Aut(Fn)${\rm Aut}(F_n)$ or to Out(Fn)${\rm Out}(F_n)$, and homomorphisms between mapping class groups. We also show that if the surface S$S$ has r$r$ marked point but no boundary components, then Mod(S)${\rm Mod}(S)$ is generated by involutions if and only if g & GT;3$g\geqslant 3$ and r & LE;2g-2$r\leqslant 2g-2$.
引用
收藏
页码:899 / 935
页数:37
相关论文
共 50 条
  • [31] ON THE DIMENSIONS OF MAPPING CLASS GROUPS OF NON-ORIENTABLE SURFACES
    Hidber, Cristhian E.
    Jorge Sanchez Saldana, Luis
    Trujillo-Negrete, Alejandra
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2022, 24 (01) : 347 - 372
  • [32] Low-Dimensional Pseudoboehmite Structures for Microorganism Adsorption
    Fomenko, Alla N.
    Tikhonova, Irina N.
    Bakina, Olga V.
    Glazkova, Elena A.
    Svarovskaya, Natalia V.
    Lozhkomoev, Aleksandr S.
    Psakhie, Sergey G.
    INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS OF MULTILEVEL SYSTEMS 2014, 2014, 1623 : 159 - 162
  • [33] Reactivity and Mass Transfer of Low-Dimensional Catalysts
    Weissenrieder, Jonas
    Gustafson, Johan
    Stacchiola, Dario
    CHEMICAL RECORD, 2014, 14 (05) : 857 - 868
  • [34] Laver's results and low-dimensional topology
    Dehornoy, Patrick
    ARCHIVE FOR MATHEMATICAL LOGIC, 2016, 55 (1-2) : 49 - 83
  • [35] Topological Symmetry Groups and Mapping Class Groups for Spatial Graphs
    Cho, Sangbum
    Koda, Yuya
    MICHIGAN MATHEMATICAL JOURNAL, 2013, 62 (01) : 131 - 142
  • [36] Normal generators for mapping class groups are abundant
    Lanier, Justin
    Margalit, Dan
    COMMENTARII MATHEMATICI HELVETICI, 2022, 97 (01) : 1 - 59
  • [37] A NOTE ON THE GENERATING SETS FOR THE MAPPING CLASS GROUPS
    Dalyan, Elif
    Medetogullari, Elif
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (02): : 762 - 772
  • [38] Block mapping class groups and their finiteness properties
    Aramayona, J.
    Aroca, J.
    Cumplido, M.
    Skipper, R.
    Wu, X.
    GEOMETRIAE DEDICATA, 2025, 219 (02)
  • [39] Genus 3 mapping class groups are not Kahler
    Hain, Richard
    JOURNAL OF TOPOLOGY, 2015, 8 (01) : 213 - 246
  • [40] EMBEDDING THE BRAID GROUP IN MAPPING CLASS GROUPS
    Szepietowski, Blazej
    PUBLICACIONS MATEMATIQUES, 2010, 54 (02) : 359 - 368