An ionic liquid synthesis route for mixed-phase sodium titanate (Na2Ti3O7 and Na2Ti6O13) rods as an anode for sodium-ion batteries

被引:9
作者
Kumari, Pooja [1 ]
Li, Yining [1 ]
Boston, Rebecca [1 ]
机构
[1] Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, England
基金
英国工程与自然科学研究理事会;
关键词
LAYERED NA2TI3O7; PERFORMANCE; NANORODS; STORAGE;
D O I
10.1039/d3nr00639e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium ion batteries represent a sustainable alternative to Li-ion technologies. Challenges with material properties remain, however, particularly with regards the performance of anodes. We report a rapid, energy-efficient ionic liquid synthesis method for mixed phase Na2Ti3O7 and Na2Ti6O13 rods. This method is based on a novel phase-transfer route which produces pure functional materials via a dehydrated IL. The structure of the synthesised materials was characterised using powder X-ray diffraction, which confirms the formation of a mixed Na2Ti3O7 and Na2Ti6O13 phase, with majority Na2Ti3O7 phase, in contrast to previous synthesis methods. Scanning and transmission electron microscopy analysis reveals a rod morphology, with an average diameter and length of 87 nm & PLUSMN; 3 nm and 1.37 & mu;m & PLUSMN; 0.07 & mu;m, respectively. The initial discharge and charge capacity of Na2Ti3O7 nanorods were measured as 325.20 mA h g(-1) and 149.07 mA h g(-1), respectively, at 10 mA g(-1) between 0.01-2.5 V. We attribute the enhanced performance to the higher weight fraction of Na2Ti3O7 phase vs. previous reports, demonstrating the potential of the ionic liquid method when applied to sodium titanate materials.
引用
收藏
页码:12087 / 12094
页数:8
相关论文
共 38 条
[1]   Nature-Inspired Na2Ti3O7 Nanosheets-Formed Three-Dimensional Microflowers Architecture as a High-Performance Anode Material for Rechargeable Sodium-Ion Batteries [J].
Anwer, Shoaib ;
Huang, Yongxin ;
Liu, Jia ;
Liu, Jiajia ;
Xu, Meng ;
Wang, Ziheng ;
Chen, Renjie ;
Zhang, Jiatao ;
Wu, Feng .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (13) :11669-11677
[2]  
BAMBERGER CE, 1987, J AM CERAM SOC, V70, pC48, DOI 10.1111/j.1151-2916.1987.tb04963.x
[3]   A New Triclinic Phase Na2Ti3O7Anode for Sodium-Ion Battery [J].
Cao, Yang ;
Ye, Qi ;
Wang, Fanfan ;
Fan, Xiaoliang ;
Hu, Lintong ;
Wang, Fakun ;
Zhai, Tianyou ;
Li, Huiqiao .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (39)
[4]   Mixed Sodium Titanate as an Anode for Sodium-Ion Battery [J].
Cech, O. ;
Vanysek, P. ;
Chladil, L. ;
Castkova, K. .
17TH INTERNATIONAL CONFERENCE ON ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 2016), 2016, 74 (01) :331-337
[5]   Effect of vanadium doping on the electrochemical performances of sodium titanate anode for sodium ion battery application [J].
Chandel, Sakshee ;
Zulkifli ;
Kim, Jaekook ;
Rai, Alok Kumar .
DALTON TRANSACTIONS, 2022, 51 (31) :11797-11805
[6]   Hierarchically nanorod structured Na2Ti6O13/Na2Ti3O7 nanocomposite as a superior anode for high-performance sodium ion battery [J].
Chandel, Sakshee ;
Lee, Seulgi ;
Lee, Seunggyeong ;
Kim, Sungjin ;
Singh, Satendra Pal ;
Kim, Jaekook ;
Rai, Alok Kumar .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 877
[7]   Towards a Greener and Scalable Synthesis of Na2Ti6O13 Nanorods and Their Application as Anodes in Batteries for Grid-Level Energy Storage [J].
De Carolis, Dario M. ;
Vrankovic, Dragoljub ;
Kiefer, Samira A. ;
Bruder, Enrico ;
Duerrschnabel, Michael Thomas ;
Molina-Luna, Leopoldo ;
Graczyk-Zajac, Magdalena ;
Riedel, Ralf .
ENERGY TECHNOLOGY, 2021, 9 (01)
[8]   Titanate Anodes for Sodium Ion Batteries [J].
Doeff, Marca M. ;
Cabana, Jordi ;
Shirpour, Mona .
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2014, 24 (01) :5-14
[9]   Investigation of ultrafast energy transfer mechanism in BODIPY-Porphyrin dyad system [J].
Dumanogullari, Fatih Mehmet ;
Tutel, Yusuf ;
Kucukoz, Betul ;
Sevinc, Gokhan ;
Karatay, Ahmet ;
Yilmaz, Halil ;
Hayvali, Mustafa ;
Elmali, Ayhan .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2019, 373 :116-121
[10]   A New General Synthetic Strategy for Phase-Pure Complex Functional Materials [J].
Green, David C. ;
Glatzel, Stefan ;
Collins, Andrew M. ;
Patil, Avinash J. ;
Hall, Simon R. .
ADVANCED MATERIALS, 2012, 24 (42) :5767-5772