Statistical Decomposition and Machine Learning to Clean In Situ Spaceflight Magnetic Field Measurements

被引:3
作者
Finley, M. G. [1 ,2 ,3 ]
Bowen, T. A. [4 ]
Pulupa, M. [4 ]
Koval, A. [2 ,5 ]
Miles, D. M. [1 ]
机构
[1] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[2] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA
[3] Univ Maryland, College Pk, MD USA
[4] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA
[5] Univ Maryland Baltimore Cty, Baltimore, MD USA
关键词
magnetic field data; magnetic interference; magnetometer; interference suppression; machine learning; convolutional neural networks; SINGULAR SPECTRUM ANALYSIS;
D O I
10.1029/2023GL103626
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Robust in situ magnetic field measurements are critical to understanding the various mechanisms that couple mass, momentum, and energy throughout our solar system. However, the spacecraft on which magnetometers are often deployed contaminate the magnetic field measurements via onboard subsystems including reaction wheels and magnetorquers. Two magnetometers can be deployed at different distances from the spacecraft to determine an approximation of the interfering field for subsequent removal, but constant data streams from both magnetometers can be impractical due to power and telemetry limitations. Here we propose a method to identify and remove time-varying magnetic interference from sources such as reaction wheels using statistical decomposition and convolutional neural networks, providing high-fidelity magnetic field data even in cases where dual-sensor measurements are not constantly available. For example, a measurement interval from the Parker Solar Probe outboard magnetometer experienced a 95.1% reduction in reaction wheel interference following application of the proposed technique.
引用
收藏
页数:10
相关论文
共 40 条
[1]   The FIELDS Instrument Suite for Solar Probe Plus [J].
Bale, S. D. ;
Goetz, K. ;
Harvey, P. R. ;
Turin, P. ;
Bonnell, J. W. ;
Dudok de Wit, T. ;
Ergun, R. E. ;
MacDowall, R. J. ;
Pulupa, M. ;
Andre, M. ;
Bolton, M. ;
Bougeret, J. -L. ;
Bowen, T. A. ;
Burgess, D. ;
Cattell, C. A. ;
Chandran, B. D. G. ;
Chaston, C. C. ;
Chen, C. H. K. ;
Choi, M. K. ;
Connerney, J. E. ;
Cranmer, S. ;
Diaz-Aguado, M. ;
Donakowski, W. ;
Drake, J. F. ;
Farrell, W. M. ;
Fergeau, P. ;
Fermin, J. ;
Fischer, J. ;
Fox, N. ;
Glaser, D. ;
Goldstein, M. ;
Gordon, D. ;
Hanson, E. ;
Harris, S. E. ;
Hayes, L. M. ;
Hinze, J. J. ;
Hollweg, J. V. ;
Horbury, T. S. ;
Howard, R. A. ;
Hoxie, V. ;
Jannet, G. ;
Karlsson, M. ;
Kasper, J. C. ;
Kellogg, P. J. ;
Kien, M. ;
Klimchuk, J. A. ;
Krasnoselskikh, V. V. ;
Krucker, S. ;
Lynch, J. J. ;
Maksimovic, M. .
SPACE SCIENCE REVIEWS, 2016, 204 (1-4) :49-82
[2]   Neural Network Reconstruction of Plasma Space-Time [J].
Bard, C. ;
Dorelli, J. C. .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2021, 8
[3]   A Merged Search-Coil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS [J].
Bowen, T. A. ;
Bale, S. D. ;
Bonnell, J. W. ;
de Wit, T. Dudok ;
Goetz, K. ;
Goodrich, K. ;
Gruesbeck, J. ;
Harvey, P. R. ;
Jannet, G. ;
Koval, A. ;
MacDowall, R. J. ;
Malaspina, D. M. ;
Pulupa, M. ;
Revillet, C. ;
Sheppard, D. ;
Szabo, A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (05)
[4]   Ion-scale Electromagnetic Waves in the Inner Heliosphere [J].
Bowen, Trevor A. ;
Mallet, Alfred ;
Huang, Jia ;
Klein, Kristopher G. ;
Malaspina, David M. ;
Stevens, Michael ;
Bale, Stuart D. ;
Bonnell, J. W. ;
Case, Anthony W. ;
Chandran, Benjamin D. G. ;
Chaston, C. C. ;
Chen, Christopher H. K. ;
de Wit, Thierry Dudok ;
Goetz, Keith ;
Harvey, Peter R. ;
Howes, Gregory G. ;
Kasper, J. C. ;
Korreck, Kelly E. ;
Larson, Davin ;
Livi, Roberto ;
MacDowall, Robert J. ;
McManus, Michael D. ;
Pulupa, Marc ;
Verniero, J. L. ;
Whittlesey, Phyllis .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02)
[5]   The Challenge of Machine Learning in Space Weather: Nowcasting and Forecasting [J].
Camporeale, E. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2019, 17 (08) :1166-1207
[6]   Singular spectrum analysis for modeling seasonal signals from GPS time series [J].
Chen, Q. ;
van Dam, T. ;
Sneeuw, N. ;
Collilieux, X. ;
Weigelt, M. ;
Rebischung, P. .
JOURNAL OF GEODYNAMICS, 2013, 72 :25-35
[7]  
Chunwei Tian, 2019, Genetic and Evolutionary Computing. Proceedings of the Twelfth International Conference on Genetic and Evolutionary Computing. Advances in Intelligent Systems and Computing (AISC 834), P563, DOI 10.1007/978-981-13-5841-8_59
[8]  
Clagett C., 2017, SMALL SAT C
[9]   Automatic Classification of Auroral Images From the Oslo Auroral THEMIS (OATH) Data set Using Machine Learning [J].
Clausen, Lasse B. N. ;
Nickisch, Hannes .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (07) :5640-5647
[10]   Maximum-variance gradiometer technique for removal of spacecraft-generated disturbances from magnetic field data [J].
Constantinescu, Ovidiu Dragos ;
Auster, Hans-Ulrich ;
Delva, Magda ;
Hillenmaier, Olaf ;
Magnes, Werner ;
Plaschke, Ferdinand .
GEOSCIENTIFIC INSTRUMENTATION METHODS AND DATA SYSTEMS, 2020, 9 (02) :451-469