Thermal remote sensing for mapping the sub-Arctic permafrost and refining its southern limits

被引:4
作者
Wang, Cuizhen [1 ,2 ]
Guo, Dianfan [1 ,3 ]
Zang, Shuying [1 ,3 ]
机构
[1] Harbin Normal Univ, Spatial Informat Serv Cold Reg, Heilongjiang Prov Key Lab Geog Environm Monitoring, Harbin 150025, Peoples R China
[2] Univ South Carolina, Dept Geog, Columbia, SC 29208 USA
[3] Heilongjiang Prov Collaborat Innovat Ctr Cold Reg, Harbin 150025, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal remote sensing; Permafrost; Southern limit; MAGT; TTOP model; FOREST ECOTONE; CLIMATE; MAP;
D O I
10.1016/j.jag.2023.103235
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Permafrost soils store more than one fourth of global soil organic carbon. This important carbon pool is threatened by carbon release from permafrost thawing. Especially in sub-Arctic transition zones, accurate mapping of permafrost is crucial for timely documentation of permafrost retreat and the consequent carbon uptake in its fragile ecosystems. Utilizing the 8-day Aqua/MODIS land surface temperature (LST) products in 2003-2020, this study extracts the southern limits of a sub-Arctic boreal mountain permafrost in the Amur River Basin bordering China, Russa, and Mongolia. A temporally dynamic MODIS Look-up-table is built to scale the MODIS LST to daily ground surface temperature. Using a thermal equilibrium model, the mean annual ground temperature (MAGT) on top of permafrost ground is estimated. The 18-year average MAGT = 0 degrees C defines the southern limits of the permafrost. Integrating the spatial distributions and temporal frequencies of annual MAGT < 0 <degrees>C, a probability index of permafrost continuity is extracted to classify permafrost types in a km-scale. The extracted permafrost map shows a similar pattern of permafrost distributions as the currently adopted global permafrost map from the International Permafrost Association (IPA). More importantly, it reveals an apparent northward shift of the southern limits. This study showcases the advantages of thermal remote sensing in exploring permafrost retreat, which provides the base information for modeling carbon release in the vulnerable transitional zone. The spatially and temporally continuous satellite observations could improve our carbon monitoring in cold lands under the pressure of global warming.
引用
收藏
页数:11
相关论文
共 29 条
[1]   The new database of the Global Terrestrial Network for Permafrost (GTN-P) [J].
Biskaborn, B. K. ;
Lanckman, J. -P. ;
Lantuit, H. ;
Elger, K. ;
Streletskiy, D. A. ;
Cable, W. L. ;
Romanovsky, V. E. .
EARTH SYSTEM SCIENCE DATA, 2015, 7 (02) :245-259
[2]   Permafrost is warming at a global scale [J].
Biskaborn, Boris K. ;
Smith, Sharon L. ;
Noetzli, Jeannette ;
Matthes, Heidrun ;
Vieira, Goncalo ;
Streletskiy, Dmitry A. ;
Schoeneich, Philippe ;
Romanovsky, Vladimir E. ;
Lewkowicz, Antoni G. ;
Abramov, Andrey ;
Allard, Michel ;
Boike, Julia ;
Cable, William L. ;
Christiansen, Hanne H. ;
Delaloye, Reynald ;
Diekmann, Bernhard ;
Drozdov, Dmitry ;
Etzelmueller, Bernd ;
Grosse, Guido ;
Guglielmin, Mauro ;
Ingeman-Nielsen, Thomas ;
Isaksen, Ketil ;
Ishikawa, Mamoru ;
Johansson, Margareta ;
Johannsson, Halldor ;
Joo, Anseok ;
Kaverin, Dmitry ;
Kholodov, Alexander ;
Konstantinov, Pavel ;
Kroeger, Tim ;
Lambiel, Christophe ;
Lanckman, Jean-Pierre ;
Luo, Dongliang ;
Malkova, Galina ;
Meiklejohn, Ian ;
Moskalenko, Natalia ;
Oliva, Marc ;
Phillips, Marcia ;
Ramos, Miguel ;
Sannel, A. Britta K. ;
Sergeev, Dmitrii ;
Seybold, Cathy ;
Skryabin, Pavel ;
Vasiliev, Alexander ;
Wu, Qingbai ;
Yoshikawa, Kenji ;
Zheleznyak, Mikhail ;
Lantuit, Hugues .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]  
Brown E., 2002, CIRCUM ARCTIC MAP PE, DOI [DOI 10.7265/SKBG-KF16, 10.7265/skbg-kf16]
[4]  
Brown J., 1997, Circum-Arctic map of permafrost and ground-ice conditions p, P45
[5]  
Bykova Alina., 2020, Permafrost Thaw in a Warming World: The Arctic Institutes Permafrost Series Fall-Winter 2020
[6]   The boreal-temperate forest ecotone response to climate change [J].
Evans, Piers ;
Brown, Carissa D. .
ENVIRONMENTAL REVIEWS, 2017, 25 (04) :423-431
[7]   Gap-Filling of 8-Day Terra MODIS Daytime Land Surface Temperature in High-Latitude Cold Region with Generalized Additive Models (GAM) [J].
Guo, Dianfan ;
Wang, Cuizhen ;
Zang, Shuying ;
Hua, Jinxi ;
Lv, Zhenghan ;
Lin, Yue .
REMOTE SENSING, 2021, 13 (18)
[8]  
Heginbottom J.A., 1993, P 6 INT C PERM S CHI, P1132
[9]   Degradation of permafrost in the Xing'anling Mountains, northeastern China [J].
Jin, Huijun ;
Yu, Qihao ;
Lii, Lanzhi ;
Guo, Dongxin ;
He, Ruixia ;
Yu, Shaopeng ;
Sun, Guangyou ;
Li, Yingwu .
PERMAFROST AND PERIGLACIAL PROCESSES, 2007, 18 (03) :245-258
[10]   Mapping Mountain Permafrost Landscapes in Siberia Using Landsat Thermal Imagery [J].
Kalinicheva, Svetlana V. ;
Fedorov, Alexander N. ;
Zhelezniak, Mikhail N. .
GEOSCIENCES, 2019, 9 (01)