Hyperspectral Sparse Unmixing via Nonconvex Shrinkage Penalties

被引:26
作者
Ren, Longfei [1 ]
Hong, Danfeng [1 ]
Gao, Lianru [1 ]
Sun, Xu [1 ]
Huang, Min [1 ,2 ]
Chanussot, Jocelyn [3 ,4 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Optoelect, Beijing 100049, Peoples R China
[3] Univ Grenoble Alpes, GIPSA Lab, CNRS, Grenoble Inst Technol Grenoble INP, F-38000 Grenoble, France
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Libraries; TV; Sun; Correlation; Computational modeling; Synthetic data; Alternating direction method of multipliers (ADMM); hyperspectral image; nonconvex optimization; sparse unmixing; thresholding mapping; ALTERNATING DIRECTION METHOD; ALGORITHM; IDENTIFICATION; CLASSIFICATION; MINIMIZATION; MULTIPLIERS; REGRESSION;
D O I
10.1109/TGRS.2022.3232570
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral sparse unmixing aims at finding the optimal subset of spectral signatures in the given spectral library and estimating their proportions in each pixel. Recently, simultaneously sparse and low-rank representations (SSLRRs) have been widely used in the hyperspectral sparse unmixing task. This article developed a new unified framework to approximate the SSLRR-based unmixing model. The heart of the proposed framework is to design the new nonconvex penalties for efficient minimization by the means of two families of thresholding mappings, including the firm thresholding mapping and generalized shrinkage mapping. Both mappings can be regarded as generalizations of both soft thresholding and hard thresholding. Unlike previous approaches with explicit penalties, the proposed framework does not require explicit forms of penalties but only relevant thresholding mappings. Furthermore, an alternating direction method of multipliers (ADMM) was designed to solve the resulting optimization problem. Experiments conducted on the synthetic data and real data demonstrate the superiority of the proposed framework in improving the unmixing performance with respect to state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 62 条
[21]   Interpretable Hyperspectral Artificial Intelligence: When nonconvex modeling meets hyperspectral remote sensing [J].
Hong, Danfeng ;
He, Wei ;
Yokoya, Naoto ;
Yao, Jing ;
Gao, Lianru ;
Zhang, Liangpei ;
Chanussot, Jocelyn ;
Zhu, Xiaoxiang .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (02) :52-87
[22]   More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification [J].
Hong, Danfeng ;
Gao, Lianru ;
Yokoya, Naoto ;
Yao, Jing ;
Chanussot, Jocelyn ;
Du, Qian ;
Zhang, Bing .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05) :4340-4354
[23]   An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing [J].
Hong, Danfeng ;
Yokoya, Naoto ;
Chanussot, Jocelyn ;
Zhu, Xiao Xiang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) :1923-1938
[24]   Joint-Sparse-Blocks and Low-Rank Representation for Hyperspectral Unmixing [J].
Huang, Jie ;
Huang, Ting-Zhu ;
Deng, Liang-Jian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04) :2419-2438
[25]   Sparse Unmixing of Hyperspectral Data [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2014-2039
[26]   Collaborative Sparse Regression for Hyperspectral Unmixing [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :341-354
[27]   Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (11) :4484-4502
[28]   HYPERSPECTRAL UNMIXING WITH SPARSE GROUP LASSO [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, :3586-3589
[29]   Spectral unmixing [J].
Keshava, N ;
Mustard, JF .
IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) :44-57
[30]   Deep Unsupervised Blind Hyperspectral and Multispectral Data Fusion [J].
Li, Jiaxin ;
Zheng, Ke ;
Yao, Jing ;
Gao, Lianru ;
Hong, Danfeng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19