Elastic Net Regularization Paths for All Generalized Linear Models

被引:282
作者
Tay, J. Kenneth [1 ]
Narasimhan, Balasubramanian [2 ]
Hastie, Trevor [2 ]
机构
[1] Stanford Univ, Dept Stat, 390 Jane Stanford Way, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biomed Data Sci, 390 Jane Stanford Way, Stanford, CA 94305 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
lasso; elastic net; 1 penalty; regularization path; coordinate descent; generalized linear models; survival; Cox model; VARIABLE SELECTION; REGRESSION;
D O I
10.18637/jss.v106.i01
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The lasso and elastic net are popular regularized regression models for supervised learning. Friedman, Hastie, and Tibshirani (2010) introduced a computationally efficient algorithm for computing the elastic net regularization path for ordinary least squares regression, logistic regression and multinomial logistic regression, while Simon, Friedman, Hastie, and Tibshirani (2011) extended this work to Cox models for right-censored data. We further extend the reach of the elastic net-regularized regression to all generalized linear model families, Cox models with (start, stop] data and strata, and a simplified version of the relaxed lasso. We also discuss convenient utility functions for measuring the performance of these fitted models.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 45 条
[1]   COX REGRESSION-MODEL FOR COUNTING-PROCESSES - A LARGE SAMPLE STUDY [J].
ANDERSEN, PK ;
GILL, RD .
ANNALS OF STATISTICS, 1982, 10 (04) :1100-1120
[2]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[3]  
Bates S, 2022, Arxiv, DOI [arXiv:2104.00673, DOI 10.48550/ARXIV.2104.00673, 10.48550/ARXIV.2104.00673]
[4]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[5]   COORDINATE DESCENT ALGORITHMS FOR NONCONVEX PENALIZED REGRESSION, WITH APPLICATIONS TO BIOLOGICAL FEATURE SELECTION [J].
Breheny, Patrick ;
Huang, Jian .
ANNALS OF APPLIED STATISTICS, 2011, 5 (01) :232-253
[6]  
Breslow N.E., 1972, J Royal Stat Soc B, V34, P216, DOI DOI 10.1111/J.2517-6161.1972.TB00900.X
[7]  
COX DR, 1972, J R STAT SOC B, V34, P187
[8]  
Dua D, 2019, UCI MACHINE LEARNING
[9]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[10]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22