Realization of Qi-Wu-Zhang model in spin-orbit-coupled ultracold fermions

被引:22
|
作者
Liang, Ming-Cheng [1 ,2 ]
Wei, Yu-Dong [1 ,2 ]
Zhang, Long [1 ,2 ,5 ,6 ]
Wang, Xu-Jie [1 ,2 ]
Zhang, Han [1 ,2 ]
Wang, Wen -Wei [1 ,2 ]
Qi, Wei [1 ,2 ]
Liu, Xiong-Jun [1 ,2 ,3 ,5 ]
Zhang, Xibo [1 ,2 ,4 ,5 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[2] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Int Quantum Acad, Shenzhen 518048, Peoples R China
[4] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[5] Hefei Natl Lab, Hefei 230088, Peoples R China
[6] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
EDGE STATES; QUANTUM;
D O I
10.1103/PhysRevResearch.5.L012006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the optical Raman lattice technique, we experimentally realize the Qi-Wu-Zhang model for the quantum anomalous Hall phase in ultracold fermions with two-dimensional (2D) spin-orbit (SO) coupling. We develop an experimental protocol of pump-probe quench measurement to probe, with minimal heating, the resonant spin flipping on a particular quasimomentum subspace called band-inversion surfaces. With this protocol we demonstrate Dirac-type 2D SO coupling in a fermionic system, and detect nontrivial band topology by observing the change of band-inversion surfaces as the two-photon detuning varies. The nontrivial band topology is also observed by slowly loading the atoms into optical Raman lattices and measuring the spin textures. Our results show solid evidence for the realization of the minimal SO-coupled quantum anomalous Hall model, which can provide a feasible platform to investigate novel topological physics including the correlation effects with SO-coupled ultracold fermions.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Spin susceptibility of spin-orbit-coupled Fermi superfluids
    Iskin, M.
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [42] Spin-orbit-coupled soliton in a random potential
    Mardonov, Sh
    Konotop, V. V.
    Malomed, B. A.
    Modugno, M.
    Sherman, E. Ya
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [43] Engineering infinite-range SU(n) interactions with spin-orbit-coupled fermions in an optical lattice
    Perlin, Michael A.
    Barberena, Diego
    Mamaev, Mikhail
    Sundar, Bhuvanesh
    Lewis-Swan, Robert J.
    Rey, Ana Maria
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [44] Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure
    Wang, Xuhui
    Pauyac, Christian Ortiz
    Manchon, Aurelien
    PHYSICAL REVIEW B, 2014, 89 (05)
  • [45] Transport spectroscopy of a spin-orbit-coupled spin to a quantum dot
    Giavaras, G.
    Nori, Franco
    PHYSICAL REVIEW B, 2016, 94 (15)
  • [46] Experimental realization of the topological Haldane model with ultracold fermions
    Jotzu, Gregor
    Messer, Michael
    Desbuquois, Remi
    Lebrat, Martin
    Uehlinger, Thomas
    Greif, Daniel
    Esslinger, Tilman
    NATURE, 2014, 515 (7526) : 237 - U191
  • [47] Experimental realization of the topological Haldane model with ultracold fermions
    Gregor Jotzu
    Michael Messer
    Rémi Desbuquois
    Martin Lebrat
    Thomas Uehlinger
    Daniel Greif
    Tilman Esslinger
    Nature, 2014, 515 : 237 - 240
  • [48] Superfluid density of a spin-orbit-coupled Bose gas
    Zhang, Yi-Cai
    Yu, Zeng-Qiang
    Ng, Tai Kai
    Zhang, Shizhong
    Pitaevskii, Lev
    Stringari, Sandro
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [49] Double reflection of spin-orbit-coupled cold atoms
    Zhen, Huang
    Wen, Zeng
    Yi, Gu
    Li, Liu
    Lu, Zhou
    Zhang Wei-Ping
    ACTA PHYSICA SINICA, 2016, 65 (16)
  • [50] CPT-symmetric spin-orbit-coupled condensate
    Kartashov, Y. V.
    Konotop, V. V.
    Zezyulin, D. A.
    EPL, 2014, 107 (05)