Realization of Qi-Wu-Zhang model in spin-orbit-coupled ultracold fermions

被引:22
|
作者
Liang, Ming-Cheng [1 ,2 ]
Wei, Yu-Dong [1 ,2 ]
Zhang, Long [1 ,2 ,5 ,6 ]
Wang, Xu-Jie [1 ,2 ]
Zhang, Han [1 ,2 ]
Wang, Wen -Wei [1 ,2 ]
Qi, Wei [1 ,2 ]
Liu, Xiong-Jun [1 ,2 ,3 ,5 ]
Zhang, Xibo [1 ,2 ,4 ,5 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[2] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Int Quantum Acad, Shenzhen 518048, Peoples R China
[4] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[5] Hefei Natl Lab, Hefei 230088, Peoples R China
[6] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
EDGE STATES; QUANTUM;
D O I
10.1103/PhysRevResearch.5.L012006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the optical Raman lattice technique, we experimentally realize the Qi-Wu-Zhang model for the quantum anomalous Hall phase in ultracold fermions with two-dimensional (2D) spin-orbit (SO) coupling. We develop an experimental protocol of pump-probe quench measurement to probe, with minimal heating, the resonant spin flipping on a particular quasimomentum subspace called band-inversion surfaces. With this protocol we demonstrate Dirac-type 2D SO coupling in a fermionic system, and detect nontrivial band topology by observing the change of band-inversion surfaces as the two-photon detuning varies. The nontrivial band topology is also observed by slowly loading the atoms into optical Raman lattices and measuring the spin textures. Our results show solid evidence for the realization of the minimal SO-coupled quantum anomalous Hall model, which can provide a feasible platform to investigate novel topological physics including the correlation effects with SO-coupled ultracold fermions.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Spin-orbit-coupled superconductivity
    Shun-Tsung Lo
    Shih-Wei Lin
    Yi-Ting Wang
    Sheng-Di Lin
    C.-T. Liang
    Scientific Reports, 4
  • [22] Spin-orbit-coupled superconductivity
    Lo, Shun-Tsung
    Lin, Shih-Wei
    Wang, Yi-Ting
    Lin, Sheng-Di
    Liang, C. -T.
    SCIENTIFIC REPORTS, 2014, 4
  • [23] Deconfinement of Mott localized electrons into topological and spin-orbit-coupled Dirac fermions
    Pizarro, Jose M.
    Adler, Severino
    Zantout, Karim
    Mertz, Thomas
    Barone, Paolo
    Valenti, Roser
    Sangiovanni, Giorgio
    Wehling, Tim O.
    NPJ QUANTUM MATERIALS, 2020, 5 (01)
  • [24] Majorana fermions in one-dimensional spin-orbit-coupled Fermi gases
    Wei, Ran
    Mueller, Erich J.
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [25] Anisotropic spin model of strong spin-orbit-coupled triangular antiferromagnets
    Li, Yao-Dong
    Wang, Xiaoqun
    Chen, Gang
    PHYSICAL REVIEW B, 2016, 94 (03)
  • [26] Chiral control of quantum states in non-Hermitian spin-orbit-coupled fermions
    Ren, Zejian
    Liu, Dong
    Zhao, Entong
    He, Chengdong
    Pak, Ka Kwan
    Li, Jensen
    Jo, Gyu-Boong
    NATURE PHYSICS, 2022, 18 (04) : 385 - +
  • [27] Spin-orbit-coupled topological Fulde-Ferrell states of fermions in a harmonic trap
    Jiang, Lei
    Tiesinga, Eite
    Liu, Xia-Ji
    Hu, Hui
    Pu, Han
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [28] Spin-orbit-coupled ferroelectric superconductivity
    Kanasugi, Shota
    Yanase, Youichi
    PHYSICAL REVIEW B, 2018, 98 (02)
  • [29] Models of spin-orbit-coupled oligomers
    Gligoric, G.
    Radosavljevic, A.
    Petrovic, J.
    Maluckov, A.
    Hadzievski, Lj.
    Malomed, B. A.
    CHAOS, 2017, 27 (11)
  • [30] Engineering spin squeezing in a 3D optical lattice with interacting spin-orbit-coupled fermions
    He, P.
    Perlin, M. A.
    Muleady, S. R.
    Lewis-Swan, R. J.
    Hutson, R. B.
    Ye, J.
    Rey, A. M.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):