Iterative learning control applied to distributed-order linear time invariant MIMO systems to achieve learnability

被引:1
作者
Angeles-Ramirez, Oscar A. [1 ]
Fernandez-Anaya, Guillermo [1 ]
Munoz-Vazquez, Aldo J. [2 ]
Sanchez-Torres, Juan D. [3 ]
Melendez-Vazquez, Fidel [1 ]
机构
[1] Univ Iberoamer, Phys & Math Dept, 880 Prol Paseo Reforma, Mexico City 01219, DF, Mexico
[2] Texas A&M Univ, Higher Educ Ctr McAllen, Dept Multidisciplinary Engn, 6200 Tres Lagos Blvd, Mcallen, TX 78504 USA
[3] ITESO, Dept Math & Phys, Perifer Sur Manuel Gomez Morin 8585, Tlaquepaque 45604, Jalisco, Mexico
关键词
distributed-order linear time invariant systems; fractional systems; iterative learning control; learnability; positive realness; strictly positive realness; DISSIPATIVITY; STABILITY; CALCULUS;
D O I
10.1002/asjc.2973
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sufficient and necessary conditions for a distributed-order linear time invariant system to be positive real are derived in terms of linear matrix inequalities. The positive realness condition is derived for three of the most usual cases presented in literature, in the realm of distributed-order linear time invariant systems. As an additional product of this paper, the strictly positive realness condition can be derived. In addition, the concept of learnability of fractional-order multi-input multi-output systems is extended to the case of distributed-order systems, which is approached from the concept of output-dissipativity by using an iterative learning scheme.
引用
收藏
页码:2508 / 2520
页数:13
相关论文
共 32 条
  • [1] Identification of complex order-distributions
    Adams, J. L.
    Hartley, T. T.
    Lorenzo, C. F.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) : 1375 - 1388
  • [2] Arimoto S., 1990, International Journal of Adaptive Control and Signal Processing, V4, P543, DOI 10.1002/acs.4480040610
  • [3] Equivalence relations between learnability, output-dissipativity and strict positive realness
    Arimoto, S
    Naniwa, T
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (10) : 824 - 831
  • [4] Stability and Stabilization of Fractional-Order Systems with Different Derivative Orders: An LMI Approach
    Badri, Pouya
    Sojoodi, Mandi
    [J]. ASIAN JOURNAL OF CONTROL, 2019, 21 (05) : 2270 - 2279
  • [5] Caputo M., 1969, SIAM J NUMER ANAL
  • [6] Caputo M., 1995, ANNALI DELLUNIVERSIT, V41, P73, DOI 10.1007/BF02826009
  • [7] Robust dissipativity and dissipation of a class of fractional-order uncertain linear systems
    Chen, Liping
    Yin, Hao
    Wu, Ranchao
    Yin, Lisheng
    Chen, YangQuan
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (10) : 1454 - 1465
  • [8] Numerical analysis for distributed-order differential equations
    Diethelm, Kai
    Ford, Neville J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) : 96 - 104
  • [9] Ditkin V. A., 1965, Integral Transforms and Operational Calculus
  • [10] Eidelman S. D., 2004, Analytic methods in the theory of differential and pseudodifferential equations of parabolic type