Chemical reaction on silicon carbide wafer (0 0 0 1 and 0 0 0-1) with water molecules in nanoscale polishing

被引:12
作者
Tian, Zige [1 ]
Lu, Jing [1 ,2 ]
Luo, Qiufa [2 ]
Xu, Xipeng [1 ,3 ]
机构
[1] Huaqiao Univ, Inst Mfg Engn, Xiamen 361021, Peoples R China
[2] Huaqiao Univ, Natl & Local Joint Engn Res Ctr Intelligent Mfg Te, Xiamen 361021, Peoples R China
[3] Huaqiao Univ, Engn Res Ctr Brittle Mat Machining, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemical reaction; ReaxFF reactive molecular dynamics; Removal mechanism; 6H-SiC wafer; Nanoscale polishing; FORCE-FIELD; DYNAMICS; REAXFF; WEAR; AMORPHIZATION; MECHANISMS; OXIDATION; EELS; MD;
D O I
10.1016/j.apsusc.2022.155090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chemical reactions occurring in atomic level are of importance for the nano-manufacturing process. The tri-bochemistry mechanism for the ultra-precision polishing of 6H-SiC wafers with only deionized water used as the coolant is expounded. Both Si face and C face of 6H-SiC wafers chemically react with water molecules during the interfacial friction and then form silicon dioxide. The silicon dioxide generated on the Si face is crystallized, while that on the C face is amorphous. Reactive molecular dynamics simulations further confirm the findings of the experiments and indicate that the interfacial friction with the diamond abrasives facilitate the destruction of the lattice structure, which promotes the reaction between 6H-SiC and H2O molecules. The reveal of the chemical mechanism for the nanoscale polishing on SiC wafers may guide and optimize the polishing process, thereby improving the nano-machining efficiency.
引用
收藏
页数:10
相关论文
共 42 条
  • [1] Mechanochemistry: The mechanical activation of covalent bonds
    Beyer, MK
    Clausen-Schaumann, H
    [J]. CHEMICAL REVIEWS, 2005, 105 (08) : 2921 - 2948
  • [2] The development of a surface defect machining method for hard turning processes
    Bin Rashid, Waleed
    Goel, Saurav
    Luo, Xichun
    Ritchie, James M.
    [J]. WEAR, 2013, 302 (1-2) : 1124 - 1135
  • [3] Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions
    Chen, Lei
    Wen, Jialin
    Zhang, Peng
    Yu, Bingjun
    Chen, Cheng
    Ma, Tianbao
    Lu, Xinchun
    Kim, Seong H.
    Qian, Linmao
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [4] Tribology of Si/SiO2 in Humid Air: Transition from Severe Chemical Wear to Wearless Behavior at Nanoscale
    Chen, Lei
    He, Hongtu
    Wang, Xiaodong
    Kim, Seong H.
    Qian, Linmao
    [J]. LANGMUIR, 2015, 31 (01) : 149 - 156
  • [5] Anisotropy of chemical mechanical polishing in silicon carbide substrates
    Chen, Xiu-Fang
    Xu, Xian-Gang
    Hu, Xiao-Bo
    Li, Juan
    Jiang, Shou-Zhen
    Ning, Li-Na
    Wang, Ying-Min
    Jiang, Min-Hua
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2007, 142 (01): : 28 - 30
  • [6] Use of EELS to study the absorption edge of fused silica
    Cheng, S. C.
    Schiefelbein, S. L.
    Moore, L. A.
    Pierson-Stull, M.
    Smith, C. M.
    Sen, S.
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (28-29) : 3140 - 3146
  • [7] Chrobak D, 2011, NAT NANOTECHNOL, V6, P480, DOI [10.1038/nnano.2011.118, 10.1038/NNANO.2011.118]
  • [8] The current understanding on the diamond machining of silicon carbide
    Goel, Saurav
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (24)
  • [9] Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms
    Krishnan, Mahadevaiyer
    Nalaskowski, Jakub W.
    Cook, Lee M.
    [J]. CHEMICAL REVIEWS, 2010, 110 (01) : 178 - 204
  • [10] A nanochannel fabrication technique without nanolithography
    Lee, C
    Yang, EH
    Myung, NV
    George, T
    [J]. NANO LETTERS, 2003, 3 (10) : 1339 - 1340