A Reproducing Kernel Hilbert Space Approach to Functional Calibration of Computer Models

被引:7
作者
Tuo, Rui [1 ]
He, Shiyuan [2 ]
Pourhabib, Arash [3 ]
Ding, Yu [4 ]
Huang, Jianhua Z. [5 ]
机构
[1] Texas A&M Univ, Ind & Syst Engn, College Stn, TX 77843 USA
[2] Renmin Univ China, Inst Stat & Big Data, Beijing, Peoples R China
[3] Oklahoma State Univ, Sch Ind Engn & Management, Stillwater, OK USA
[4] Texas A&M Univ, Texas A&M, Dept Ind & Syst Engn, College Stn, TX 77843 USA
[5] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Calibration; Computer experiment; Reproducing kernel Hilbert spaces; Smoothing splines; Uncertainty quantification; BAYESIAN CONFIDENCE-INTERVALS; VALIDATION; CONVERGENCE; ADJUSTMENTS; PREDICTION; PARAMETERS; RATES;
D O I
10.1080/01621459.2021.1956938
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article develops a frequentist solution to the functional calibration problem, where the value of a calibration parameter in a computer model is allowed to vary with the value of control variables in the physical system. The need of functional calibration is motivated by engineering applications where using a constant calibration parameter results in a significant mismatch between outputs from the computer model and the physical experiment. Reproducing kernel Hilbert spaces (RKHS) are used to model the optimal calibration function, defined as the functional relationship between the calibration parameter and control variables that gives the best prediction. This optimal calibration function is estimated through penalized least squares with an RKHS-norm penalty and using physical data. An uncertainty quantification procedure is also developed for such estimates. Theoretical guarantees of the proposed method are provided in terms of prediction consistency and consitency of estimating the optimal calibration function. The proposed method is tested using both real and synthetic data and exhibits more robust performance in prediction and uncertainty quantification than the existing parametric functional calibration method and a state-of-art Bayesian method.
引用
收藏
页码:883 / 897
页数:15
相关论文
共 46 条
[1]   A Resource Allocation Framework for Experiment-Based Validation of Numerical Models [J].
Atamturktur, S. ;
Hegenderfer, J. ;
Williams, B. ;
Egeberg, M. ;
Lebensohn, R. A. ;
Unal, C. .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2015, 22 (08) :641-654
[2]   Computer model validation with functional output [J].
Bayarri, M. J. ;
Berger, J. O. ;
Cafeo, J. ;
Garcia-Donato, G. ;
Liu, F. ;
Palomo, J. ;
Parthasarathy, R. J. ;
Paulo, R. ;
Sacks, J. ;
Walsh, D. .
ANNALS OF STATISTICS, 2007, 35 (05) :1874-1906
[3]   A framework for validation of computer models [J].
Bayarri, Maria J. ;
Berger, James O. ;
Paulo, Rui ;
Sacks, Jerry ;
Cafeo, John A. ;
Cavendish, James ;
Lin, Chin-Hsu ;
Tu, Jian .
TECHNOMETRICS, 2007, 49 (02) :138-154
[4]   NONPARAMETRIC FUNCTIONAL CALIBRATION OF COMPUTER MODELS [J].
Brown, D. Andrew ;
Atamturktur, Sez .
STATISTICA SINICA, 2018, 28 (02) :721-742
[5]   A TOOL FOR THE ANALYSIS OF QUASI-NEWTON METHODS WITH APPLICATION TO UNCONSTRAINED MINIMIZATION [J].
BYRD, RH ;
NOCEDAL, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :727-739
[6]  
Craven P., 1979, Numerische Mathematik, V31, P377, DOI 10.1007/BF01404567
[7]  
Danchin R, 2005, Fourier analysis methods for PDEs
[8]  
Duchon J., 1977, Lecture Notes in Mathematics, P85
[9]  
Edmunds D., 2008, ENTROPY NUMBERS DIFF
[10]   GENERALIZED CROSS-VALIDATION AS A METHOD FOR CHOOSING A GOOD RIDGE PARAMETER [J].
GOLUB, GH ;
HEATH, M ;
WAHBA, G .
TECHNOMETRICS, 1979, 21 (02) :215-223