RMSC-VIO: Robust Multi-Stereoscopic Visual-Inertial Odometry for Local Visually Challenging Scenarios

被引:2
作者
Zhang, Tong [1 ]
Xu, Jianyu [1 ]
Shen, Hao [1 ]
Yang, Rui [2 ]
Yang, Tao [1 ]
机构
[1] Northwestern Polytech Univ, Unmanned Syst Res Inst, Xian 710072, Peoples R China
[2] Univ Bourgogne Franche Comte, CIAD UMR7533, UTBM, F-90010 Belfort, France
基金
中国国家自然科学基金;
关键词
SLAM; vision-based navigation; sensor fusion;
D O I
10.1109/LRA.2024.3377008
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present a Multi-Stereoscopic Visual-Inertial Odometry (VIO) system capable of integrating an arbitrary number of stereo cameras, exhibiting excellent robustness in the face of visually challenging scenarios. During system initialization, we introduce multi-view keyframes for simultaneous processing of multiple image inputs and propose an adaptive feature selection method to alleviate the computational burden of multi-camera systems. This method iteratively updates the state information of visual features, filtering out high-quality image feature points and effectively reducing unnecessary redundancy consumption. In the backend phase, we propose an adaptive tightly coupled optimization method, assigning corresponding optimization weights based on the quality of different image feature points, effectively enhancing localization precision. We validate the effectiveness and robustness of our system through a series of datasets, encompassing various visually challenging scenarios and practical flight experiments. Our approach achieves up to a 90% reduction in Absolute Trajectory Error (ATE) compared to state-of-the-art multi-camera VIO methods.
引用
收藏
页码:4130 / 4137
页数:8
相关论文
共 28 条
  • [21] Schauwecker K, 2013, INT CONF UNMAN AIRCR, P333
  • [22] SHI JB, 1994, 1994 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, P593, DOI 10.1109/CVPR.1994.323794
  • [23] Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight
    Sun, Ke
    Mohta, Kartik
    Pfrommer, Bernd
    Watterson, Michael
    Liu, Sikang
    Mulgaonkar, Yash
    Taylor, Camillo J.
    Kumar, Vijay
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (02): : 965 - 972
  • [24] Asynchronous Multi-View SLAM
    Yang, Anqi Joyce
    Cui, Can
    Barsan, Ioan Andrei
    Urtasun, Raquel
    Wang, Shenlong
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5669 - 5676
  • [25] Yang SW, 2014, IEEE INT CONF ROBOT, P5227, DOI 10.1109/ICRA.2014.6907627
  • [26] Monocular Visual-Inertial State Estimation With Online Initialization and Camera-IMU Extrinsic Calibration
    Yang, Zhenfei
    Shen, Shaojie
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2017, 14 (01) : 39 - 51
  • [27] Balancing the Budget: Feature Selection and Tracking for Multi-Camera Visual-Inertial Odometry
    Zhang, Lintong
    Wisth, David
    Camurri, Marco
    Fallon, Maurice
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 1182 - 1189
  • [28] A New Visual Inertial Simultaneous Localization and Mapping (SLAM) Algorithm Based on Point and Line Features
    Zhang, Tong
    Liu, Chunjiang
    Li, Jiaqi
    Pang, Minghui
    Wang, Mingang
    [J]. DRONES, 2022, 6 (01)