RMSC-VIO: Robust Multi-Stereoscopic Visual-Inertial Odometry for Local Visually Challenging Scenarios

被引:2
作者
Zhang, Tong [1 ]
Xu, Jianyu [1 ]
Shen, Hao [1 ]
Yang, Rui [2 ]
Yang, Tao [1 ]
机构
[1] Northwestern Polytech Univ, Unmanned Syst Res Inst, Xian 710072, Peoples R China
[2] Univ Bourgogne Franche Comte, CIAD UMR7533, UTBM, F-90010 Belfort, France
基金
中国国家自然科学基金;
关键词
SLAM; vision-based navigation; sensor fusion;
D O I
10.1109/LRA.2024.3377008
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We present a Multi-Stereoscopic Visual-Inertial Odometry (VIO) system capable of integrating an arbitrary number of stereo cameras, exhibiting excellent robustness in the face of visually challenging scenarios. During system initialization, we introduce multi-view keyframes for simultaneous processing of multiple image inputs and propose an adaptive feature selection method to alleviate the computational burden of multi-camera systems. This method iteratively updates the state information of visual features, filtering out high-quality image feature points and effectively reducing unnecessary redundancy consumption. In the backend phase, we propose an adaptive tightly coupled optimization method, assigning corresponding optimization weights based on the quality of different image feature points, effectively enhancing localization precision. We validate the effectiveness and robustness of our system through a series of datasets, encompassing various visually challenging scenarios and practical flight experiments. Our approach achieves up to a 90% reduction in Absolute Trajectory Error (ATE) compared to state-of-the-art multi-camera VIO methods.
引用
收藏
页码:4130 / 4137
页数:8
相关论文
共 28 条
  • [1] Abate M, 2024, Arxiv, DOI arXiv:2304.13182
  • [2] Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age
    Cadena, Cesar
    Carlone, Luca
    Carrillo, Henry
    Latif, Yasir
    Scaramuzza, Davide
    Neira, Jose
    Reid, Ian
    Leonard, John J.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (06) : 1309 - 1332
  • [3] ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM
    Campos, Carlos
    Elvira, Richard
    Gomez Rodriguez, Juan J.
    Montiel, Jose M. M.
    Tardos, Juan D.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) : 1874 - 1890
  • [4] RNIN-VIO: Robust Neural Inertial Navigation Aided Visual-Inertial Odometry in Challenging Scenes
    Chen, Danpeng
    Wang, Nan
    Xu, Runsen
    Xie, Weijian
    Bao, Hujun
    Zhang, Guofeng
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR 2021), 2021, : 275 - 283
  • [5] Radar Visual Inertial Odometry and Radar Thermal Inertial Odometry: Robust Navigation even in Challenging Visual Conditions
    Doer, Christopher
    Trommer, Gert F.
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 331 - 338
  • [6] Eckenhoff K, 2019, IEEE INT CONF ROBOT, P3158, DOI [10.1109/ICRA.2019.8793886, 10.1109/icra.2019.8793886]
  • [7] Direct Sparse Odometry
    Engel, Jakob
    Koltun, Vladlen
    Cremers, Daniel
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (03) : 611 - 625
  • [8] Forster C, 2014, IEEE INT CONF ROBOT, P15, DOI 10.1109/ICRA.2014.6906584
  • [9] Bags of Binary Words for Fast Place Recognition in Image Sequences
    Galvez-Lopez, Dorian
    Tardos, Juan D.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (05) : 1188 - 1197
  • [10] Towards Robust Visual-Inertial Odometry with Multiple Non-Overlapping Monocular Cameras
    He, Yao
    Yu, Huai
    Yang, Wen
    Scherer, Sebastian
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 9452 - 9458