Exploring Advanced Techniques for System Prediction: An in-depth review

被引:0
作者
Matias, Sheila Marie M. [1 ]
机构
[1] Eulogio Amang Rodriguez Inst Sci & Technol, Nagtahan St, Manila, Philippines
来源
2023 5TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS, ICCR | 2023年
关键词
System Prediction; Statistical Model; Time Series Analysis; Machine Learning; Deep Learning; Simulation Models; Hybrid Approach;
D O I
10.1109/ICCR60000.2023.10444849
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
System prediction involves forecasting future states or behaviors of complex systems, which could range from stock market trends and weather patterns to hardware performance and network traffic. Depending on the specific domain and nature of the data, different techniques can be employed. This article surveys the different strategies for system prediction such as: (a) Statistical Models, (b) Time Series Analysis, (c) Machine Learning, (d) Deep Learning, (e) Simulation Models, and (f) Hybrid Approaches. The current status of research in each strategy is examined, and the major problems are identified. Finally, we identify future research directions in the realm of system prediction based on our in-depth investigation.
引用
收藏
页码:85 / 89
页数:5
相关论文
共 12 条
[1]   What is Machine Learning? A Primer for the Epidemiologist [J].
Bi, Qifang ;
Goodman, Katherine E. ;
Kaminsky, Joshua ;
Lessler, Justin .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2019, 188 (12) :2222-2239
[2]   Hybrid simulation modelling in operational research: A state-of-the-art review [J].
Brailsford, Sally C. ;
Eldabi, Tillal ;
Kunc, Martin ;
Mustafee, Navonil ;
Osorio, Andres E. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 278 (03) :721-737
[3]   Predicting the Electrical Energy Consumption of Electric Arc Furnaces Using Statistical Modeling [J].
Carlsson, Leo S. ;
Samuelsson, Peter B. ;
Jonsson, Par G. .
METALS, 2019, 9 (09)
[4]   How simulation modelling can help reduce the impact of COVID-19 [J].
Currie, Christine S. M. ;
Fowler, John W. ;
Kotiadis, Kathy ;
Monks, Thomas ;
Onggo, Bhakti Stephan ;
Robertson, Duncan A. ;
Tako, Antuela A. .
JOURNAL OF SIMULATION, 2020, 14 (02) :83-97
[5]   A survey on deep learning and its applications [J].
Dong, Shi ;
Wang, Ping ;
Abbas, Khushnood .
COMPUTER SCIENCE REVIEW, 2021, 40
[6]  
Gamboa J.C.B., 2017, arXiv, DOI DOI 10.48550/ARXIV.1701.01887
[7]  
Hastie Trevor J, 2017, gam: Generalized additive models, P249
[8]   When Machine Learning Meets Privacy: A Survey and Outlook [J].
Liu, Bo ;
Ding, Ming ;
Shaham, Sina ;
Rahayu, Wenny ;
Farokhi, Farhad ;
Lin, Zihuai .
ACM COMPUTING SURVEYS, 2021, 54 (02)
[9]   LGSVL Simulator: A High Fidelity Simulator for Autonomous Driving [J].
Rong, Guodong ;
Shin, Byung Hyun ;
Tabatabaee, Hadi ;
Lu, Qiang ;
Lemke, Steve ;
Mozeiko, Martins ;
Boise, Eric ;
Uhm, Geehoon ;
Gerow, Mark ;
Mehta, Shalin ;
Agafonov, Eugene ;
Kim, Tae Hyung ;
Sterner, Eric ;
Ushiroda, Keunhae ;
Reyes, Michael ;
Zelenkovsky, Dmitry ;
Kim, Seonman .
2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
[10]   Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions [J].
Sarker I.H. .
SN Computer Science, 2021, 2 (6)