Oncological Applications of Quantum Machine Learning

被引:0
作者
Rahimi, Milad [1 ]
Asadi, Farkhondeh [1 ]
机构
[1] Shahid Beheshti Univ Med Sci, Sch Allied Med Sci, Dept Hlth Informat Technol & Management, Tehran, Iran
关键词
machine learning; quantum computer; quantum machine learning; cancer; oncology;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Cancer is a leading cause of death worldwide. Machine learning (ML) and quantum computers (QCs) have recently advanced significantly. Numerous studies have examined the application of quantum machine learning (QML) in healthcare and validated its superiority over classical ML algorithms. Objectives: This review investigates and reports the oncological applications of QML. Methods: In March 2023, an electronic investigation of PubMed, Scopus, Web of Science, IEEE, and Cochrane databases was performed. The articles were screened based on titles and abstracts, and their full texts were examined. Results: Initially, a total of 207 articles were retrieved. Thereafter, 9 articles were included in the study, most of which were published from 2020 onwards. The results indicated the implementation of various QML techniques in different aspects of oncology, such as reducing mammography image noise, edge detection of breast cancer, clinical decision support in radiotherapy treatment, and cancer classification. Conclusion: These studies revealed that integrating quantum science with ML can significantly improve patient care and clinical outcomes. Future studies should explore the integration of QC and ML and the development of novel algorithms to enhance cancer prognosis, diagnosis, and treatment planning.
引用
收藏
页数:9
相关论文
共 40 条
[31]   Adjuvant Imatinib in Patients with GIST Harboring Exon 9 KIT Mutations: Results from a Multi-institutional European Retrospective Study [J].
Vincenzi, Bruno ;
Napolitano, Andrea ;
Fiocco, Marta ;
Mir, Olivier ;
Rutkowski, Piotr ;
Blay, Jean-Yves ;
Reichardt, Peter ;
Joensuu, Heikki ;
Fumagalli, Elena ;
Gennatas, Spyridon ;
Hindi, Nadia ;
Nannini, Margherita ;
Ceruso, Mariella Spalato ;
Italiano, Antoine ;
Grignani, Giovanni ;
Brunello, Antonella ;
Gasperoni, Silvia ;
De Pas, Tommaso ;
Badalamenti, Giuseppe ;
Pantaleo, Maria A. ;
van Houdt, Winan J. ;
IJzerman, Nikki S. ;
Steeghs, Neeltje ;
Gelderblom, Hans ;
Desar, Ingrid M. E. ;
Falkenhorst, Johanna ;
Silletta, Marianna ;
Sbaraglia, Marta ;
Tonini, Giuseppe ;
Martin-Broto, Javier ;
Hohenberger, Peter ;
Le Cesne, Axel ;
Jones, Robin L. ;
Dei Tos, Angelo P. ;
Gronchi, Alessandro ;
Bauer, Sebastian ;
Casali, Paolo G. .
CLINICAL CANCER RESEARCH, 2022, 28 (08) :1672-1679
[32]  
von Mehren Margaret, 2020, J Natl Compr Canc Netw, V18, P1604, DOI 10.6004/jnccn.2020.0058
[33]   CT texture analysis can be a potential tool to differentiate gastrointestinal stromal tumors without KIT exon 11 mutation [J].
Xu, Fei ;
Ma, Xiaohong ;
Wang, Yichen ;
Tian, Yuan ;
Tang, Wei ;
Wang, Meng ;
Wei, Ren ;
Zhao, Xinming .
EUROPEAN JOURNAL OF RADIOLOGY, 2018, 107 :90-97
[34]   MRITexture-Based Models for Predicting Mitotic Index and Risk Classification of Gastrointestinal Stromal Tumors [J].
Yang, Linsha ;
Zheng, Tao ;
Dong, Yanchao ;
Wang, Zhanqiu ;
Liu, Defeng ;
Du, Juan ;
Wu, Shuo ;
Shi, Qinglei ;
Liu, Lanxiang .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (04) :1054-1065
[35]   Association between CT imaging features and KIT mutations in small intestinal gastrointestinal stromal tumors [J].
Yin, Yi-qiong ;
Liu, Chun-juan ;
Zhang, Bo ;
Wen, Yue ;
Yin, Yuan .
SCIENTIFIC REPORTS, 2019, 9 (1)
[36]   Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer [J].
Yu, Yunfang ;
Tan, Yujie ;
Xie, Chuanmiao ;
Hu, Qiugen ;
Ouyang, Jie ;
Chen, Yongjian ;
Gu, Yang ;
Li, Anlin ;
Lu, Nian ;
He, Zifan ;
Yang, Yaping ;
Chen, Kai ;
Ma, Jiafan ;
Li, Chenchen ;
Ma, Mudi ;
Li, Xiaohong ;
Zhang, Rong ;
Zhong, Haitao ;
Ou, Qiyun ;
Zhang, Yiwen ;
He, Yufang ;
Li, Gang ;
Wu, Zhuo ;
Su, Fengxi ;
Song, Erwei ;
Yao, Herui .
JAMA NETWORK OPEN, 2020, 3 (12) :E2028086
[37]   Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort [J].
Zhang, Qing-Wei ;
Gao, Yun-Jie ;
Zhang, Ran-Ying ;
Zhou, Xiao-Xuan ;
Chen, Shuang-Li ;
Zhang, Yan ;
Liu, Qiang ;
Xu, Jian-Rong ;
Ge, Zhi-Zheng .
CLINICAL AND TRANSLATIONAL MEDICINE, 2020, 9 (01)
[38]   CT Radiomics for the Preoperative Prediction of Ki67 Index in Gastrointestinal Stromal Tumors: A Multi-Center Study [J].
Zhao, Yilei ;
Feng, Meibao ;
Wang, Minhong ;
Zhang, Liang ;
Li, Meirong ;
Huang, Chencui .
FRONTIERS IN ONCOLOGY, 2021, 11
[39]   MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland [J].
Zheng, Ying-mei ;
Li, Jian ;
Liu, Song ;
Cui, Jiu-fa ;
Zhan, Jin-feng ;
Pang, Jing ;
Zhou, Rui-zhi ;
Li, Xiao-li ;
Dong, Cheng .
EUROPEAN RADIOLOGY, 2021, 31 (06) :4042-4052
[40]   The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping [J].
Zwanenburg, Alex ;
Vallieres, Martin ;
Abdalah, Mahmoud A. ;
Aerts, Hugo J. W. L. ;
Andrearczyk, Vincent ;
Apte, Aditya ;
Ashrafinia, Saeed ;
Bakas, Spyridon ;
Beukinga, Roeloff ;
Boellaard, Ronald ;
Bogowicz, Marta ;
Boldrini, Luca ;
Buvat, Irene ;
Cook, Gary J. R. ;
Davatzikos, Christos ;
Depeursinge, Adrien ;
Desseroit, Marie-Charlotte ;
Dinapoli, Nicola ;
Cuong Viet Dinh ;
Echegaray, Sebastian ;
El Naqa, Issam ;
Fedorov, Andriy Y. ;
Gatta, Roberto ;
Gillies, Robert J. ;
Goh, Vicky ;
Goetz, Michael ;
Guckenberger, Matthias ;
Ha, Sung Min ;
Hatt, Mathieu ;
Isensee, Fabian ;
Lambin, Philippe ;
Leger, Stefan ;
Leijenaar, Ralph T. H. ;
Lenkowicz, Jacopo ;
Lippert, Fiona ;
Losnegard, Are ;
Maier-Hein, Klaus H. ;
Morin, Olivier ;
Mueller, Henning ;
Napel, Sandy ;
Nioche, Christophe ;
Orlhac, Fanny ;
Pati, Sarthak ;
Pfaehler, Elisabeth A. G. ;
Rahmim, Arman ;
Rao, Arvind U. K. ;
Scherer, Jonas ;
Siddique, Muhammad Musib ;
Sijtsema, Nanna M. ;
Fernandez, Jairo Socarras .
RADIOLOGY, 2020, 295 (02) :328-338