Multiplicity of nontrivial solutions for a class of fractional Kirchhoff equations

被引:0
作者
Shao, Liuyang [1 ]
Chen, Haibo [2 ]
Pang, Yicheng [1 ]
Wang, Yingmin [1 ]
机构
[1] GuiZhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 02期
基金
中国国家自然科学基金;
关键词
fractional Kirchhoff; varied method; multiplicity; nontrivial solution; CONCENTRATION-COMPACTNESS PRINCIPLE; EXISTENCE; INEQUALITIES; REGULARITY; CALCULUS;
D O I
10.3934/math.2024203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study a class of fractional Kirchhoff with a superlinear nonlinearity: {( RN |(-o)alpha 2 u|2dx)(-o)alpha u + A.V(x)u = f(x, u) in RN, u is an element of H alpha(RN), N >= 1, (1.1) where lambda > 0 is a parameter, a and b are positive numbers satisfying M(t) = am(t) + b, m : R+ -> R+ is continuous. V : RN x R -> R is continuous. f satisfies lim f(x, t)/|t|k-1 = Q(x) uniformly in x is an element of RN |t|->infinity for each 2 < k < 2*alpha, (2*alpha = 2N N-2 alpha). We investigated the effects of functions m and Q on the solution. By applying the variational method, we obtain the existence of multiple solutions. Furthermore, it is worth mentioning that the ground state solution has also been obtained.
引用
收藏
页码:4135 / 4160
页数:26
相关论文
共 31 条
[1]   A Regularity Criterion for the 3D Density-Dependent MHD Equations [J].
Alghamdi, Ahmad Mohammad ;
Gala, Sadek ;
Ragusa, Maria Alessandra ;
Zhang, Zujin .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (02) :241-251
[2]   EXISTENCE, MULTIPLICITY AND CONCENTRATION FOR A CLASS OF FRACTIONAL p&q LAPLACIAN PROBLEMS IN RN [J].
Alves, Claudianor O. ;
Ambrosio, Vincenzo ;
Isernia, Teresa .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (04) :2009-2045
[3]   A multiplicity result for a fractional Kirchhoff equation in RN with a general nonlinearity [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (05)
[4]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[5]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[6]   Multiple solutions for a fractional p-Kirchhoff problem with Hardy nonlinearity [J].
Chen, Wenjing ;
Gui, Yuyan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 188 :316-338
[7]   Existence and Holder regularity of infinitely many solutions to a p-Kirchhoff-type problem involving a singular nonlinearity without the Ambrosetti-Rabinowitz (AR) condition [J].
Choudhuri, Debajyoti .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01)
[8]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236
[9]   GLOBAL SOLVABILITY FOR THE DEGENERATE KIRCHHOFF EQUATION WITH REAL ANALYTIC DATA [J].
DANCONA, P ;
SPAGNOLO, S .
INVENTIONES MATHEMATICAE, 1992, 108 (02) :247-262
[10]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573