FIRST-PRINCIPLES STUDY OF THE LATTICE THERMAL CONDUCTIVITY OF MoSi2P4 AND WSi2P4 MONOLAYERS

被引:0
作者
Wang, Yuhang [1 ]
Ding, Wei [1 ]
Tao, Yifeng [1 ]
机构
[1] Shangqiu Normal Univ, Sch Elect & Elect Engn, Shangqiu 476000, Peoples R China
关键词
Two-dimensional materials; first-principles calculations; lattice thermal conductivity; TOTAL-ENERGY CALCULATIONS;
D O I
10.1142/S0218625X2450001X
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, the 2D van der Waals (vdW) layered MA(2)Z(4) series has attracted a lot of attention. Among these 2D materials, MoSi2P4 and WSi2P4 monolayers each demonstrate strong environmental stability, a moderate band gap, and considerable carrier mobility. The lattice thermal transport properties in MoSi2P4 and WSi2P4 monolayer structures have been investigated using first-principles calculations. Due to the gap present in the phonon energy band structure of the WSi2P4 monolayer within the middle frequency range, the specific heat capacity, phonon group velocity, and phonon relaxation time of the WSi2P4 monolayer structure are smaller than those of the MoSi2P4 monolayer structure. This makes the lattice thermal conductivity of the WSi2P4 monolayer lower than that of the MoSi2P4 monolayer. The MoSi2P4 structure has a lattice thermal conductivity of 28 W/mK at 300 K. The WSi2P4 structure has a lattice thermal conductivity of 14.5 W/mK in the x -direction and 15 W/mK in the y-direction. The results suggest that the MoSi2P4 and WSi2P4 monolayers can be potentially used as nanoelectronics devices for thermal transport applications.
引用
收藏
页数:7
相关论文
共 45 条
[1]   First-principles quantitative prediction of the lattice thermal conductivity in random semiconductor alloys: The role of force-constant disorder [J].
Arrigoni, Marco ;
Carrete, Jesus ;
Mingo, Natalio ;
Madsen, Georg K. H. .
PHYSICAL REVIEW B, 2018, 98 (11)
[2]   MoSi2N4 single-layer: a novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties [J].
Bafekry, A. ;
Faraji, M. ;
Hoat, D. M. ;
Shahrokhi, M. ;
Fadlallah, M. M. ;
Shojaei, F. ;
Feghhi, S. A. H. ;
Ghergherehchi, M. ;
Gogova, D. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (15)
[3]  
Bandurin DA, 2017, NAT NANOTECHNOL, V12, P223, DOI [10.1038/NNANO.2016.242, 10.1038/nnano.2016.242]
[4]  
Baugher BWH, 2014, NAT NANOTECHNOL, V9, P262, DOI [10.1038/nnano.2014.25, 10.1038/NNANO.2014.25]
[5]   Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials [J].
Bernardi, Marco ;
Palummo, Maurizia ;
Grossman, Jeffrey C. .
NANO LETTERS, 2013, 13 (08) :3664-3670
[6]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[7]   Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium [J].
Cahangirov, S. ;
Topsakal, M. ;
Akturk, E. ;
Sahin, H. ;
Ciraci, S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[8]   Two-dimensional van der Waals electrical contact to monolayer MoSi2N4 [J].
Cao, Liemao ;
Zhou, Guanghui ;
Wang, Qianqian ;
Ang, L. K. ;
Ang, Yee Sin .
APPLIED PHYSICS LETTERS, 2021, 118 (01)
[9]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[10]  
Djaafri A., 2022, Philos. Mag., V102, P1