A Neural Network-Based Flame Structure Feature Extraction Method for the Lean Blowout Recognition

被引:2
作者
Yan, Puti [1 ]
Cao, Zhen [1 ,2 ,3 ]
Peng, Jiangbo [1 ,2 ]
Yang, Chaobo [1 ,2 ]
Yu, Xin [1 ,2 ]
Qiu, Penghua [3 ]
Zhang, Shanchun [1 ,2 ]
Han, Minghong [1 ,2 ]
Liu, Wenbei [1 ,2 ]
Jiang, Zuo [4 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Sci & Technol Tunable Laser, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Postdoctoral Res Stn Power Engn & Engn Thermophys, Harbin 150001, Peoples R China
[4] China Aerosp Sci & Ind Corp, Res Ctr Intelligent Syst, Beijing 100074, Peoples R China
基金
中国国家自然科学基金;
关键词
lean blowout; high-speed OH-PLIF; neural network; flame structure; feature extraction; PLIF; CH; VISUALIZATION; OH;
D O I
10.3390/aerospace11010057
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A flame's structural feature is a crucial parameter required to comprehensively understand the interaction between turbulence and flames. The generation and evolution processes of the structure feature have rarely been investigated in lean blowout (LBO) flame instability states. Hence, to understand the precursor features of the LBO flame, this work employed high-speed OH-PLIF measurements to acquire time-series LBO flame images and developed a novel feature extraction method based on a deep neural network to quantify the LBO features in real time. Meanwhile, we proposed a deep neural network segmentation method based on a tri-map called the Fire-MatteFormer, and conducted a statistical analysis on flame surface features, primarily holes. The statistical analysis results determined the relationship between the life cycle of holes (from generation to disappearance) and their area, perimeter, and total number. The trained Fire-MatteFormer model was found to represent a viable method for determining flame features in the detection of incipient LBO instability conditions. Overall, the model shows significant promise in ascertaining local flame structure features.
引用
收藏
页数:14
相关论文
共 32 条
[1]   Flame features and oscillation characteristics in near-blowout swirl-stabilized flames using high- speed OH-PLIF and mode decomposition methods [J].
Cao, Zhen ;
Yu, Xin ;
Peng, Jiangbo ;
Hu, Bin ;
Wang, Zhonghao ;
Yu, Yang ;
Gao, Long ;
Han, Minghong ;
Yuan, Xun ;
Wu, Guohua .
CHINESE JOURNAL OF AERONAUTICS, 2023, 36 (01) :191-200
[2]  
Chuang Yung-Yu, 2001, P 2001 IEEE COMP SOC
[3]  
Chuang YY, 2002, ACM T GRAPHIC, V21, P243, DOI 10.1145/566570.566572
[4]  
Doherty L.O, 2001, Prog. Energy Combust. Sci, V27, P431
[5]   Flame characteristics of a cavity-based scramjet combustor using OH-PLIF and feature extraction [J].
Gao, Long ;
Yu, Xin ;
Peng, Jiangbo ;
Tian, Ye ;
Cao, Zhen ;
Zhong, Fuyu ;
Wu, Guohua ;
Han, Minghong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (47) :20662-20675
[6]   Deep Neural Network-Based Generation of Planar CH Distribution through Flame Chemiluminescence in Premixed Turbulent Flame [J].
Han, Lei ;
Gao, Qiang ;
Zhang, Dayuan ;
Feng, Zhanyu ;
Sun, Zhiwei ;
Li, Bo ;
Li, Zhongshan .
ENERGY AND AI, 2023, 12
[7]   A data-driven approach using machine learning for early detection of the lean blowout [J].
Hasti, Veeraraghava Raju ;
Navarkar, Abhishek ;
Gore, Jay P. .
ENERGY AND AI, 2021, 5
[8]   Vortex breakdown in variable-density gaseous swirling jets [J].
Keeton, Benjamin W. ;
Carpio, Jaime ;
Nomura, Keiko K. ;
Sanchez, Antonio L. ;
Williams, Forman A. .
JOURNAL OF FLUID MECHANICS, 2022, 936
[9]   Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame [J].
Li, Z. S. ;
Li, B. ;
Sun, Z. W. ;
Bai, X. S. ;
Alden, M. .
COMBUSTION AND FLAME, 2010, 157 (06) :1087-1096
[10]   Swin Transformer: Hierarchical Vision Transformer using Shifted Windows [J].
Liu, Ze ;
Lin, Yutong ;
Cao, Yue ;
Hu, Han ;
Wei, Yixuan ;
Zhang, Zheng ;
Lin, Stephen ;
Guo, Baining .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9992-10002