Decomposition aided attention-based recurrent neural networks for multistep ahead time-series forecasting of renewable power generation

被引:16
|
作者
Damasevicius, Robertas [1 ]
Jovanovic, Luka [2 ]
Petrovic, Aleksandar [3 ]
Zivkovic, Miodrag [3 ]
Bacanin, Nebojsa [3 ]
Jovanovic, Dejan [4 ]
Antonijevic, Milos [3 ]
机构
[1] Vytautas Magnus Univ, Dept Appl Informat, Kaunas, Lithuania
[2] Singidunum Univ, Fac Tech Sci, Belgrade, Serbia
[3] Singidunum Univ, Fac Informat & Comp, Belgrade, Serbia
[4] Coll Acad Studies Dositej, Belgrade, Serbia
关键词
Renawable energy sources; Time-series forecasting; Recurrent neural networks; Attention mechanism; Metaheuristics; AI explainability; EMPIRICAL MODE DECOMPOSITION;
D O I
10.7717/peerj-cs.1795
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Renewable energy plays an increasingly important role in our future. As fossil fuels become more difficult to extract and effectively process, renewables offer a solution to the ever-increasing energy demands of the world. However, the shift toward renewable energy is not without challenges. While fossil fuels offer a more reliable means of energy storage that can be converted into usable energy, renewables are more dependent on external factors used for generation. Efficient storage of renewables is more difficult often relying on batteries that have a limited number of charge cycles. A robust and efficient system for forecasting power generation from renewable sources can help alleviate some of the difficulties associated with the transition toward renewable energy. Therefore, this study proposes an attention -based recurrent neural network approach for forecasting power generated from renewable sources. To help networks make more accurate forecasts, decomposition techniques utilized applied the time series, and a modified metaheuristic is introduced to optimized hyperparameter values of the utilized networks. This approach has been tested on two real-world renewable energy datasets covering both solar and wind farms. The models generated by the introduced metaheuristics were compared with those produced by other state-of-the-art optimizers in terms of standard regression metrics and statistical analysis. Finally, the best-performing model was interpreted using SHapley Additive exPlanations.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] Attention-based recurrent neural network for multistep-ahead prediction of process performance
    Aliabadi, Majid Moradi
    Emami, Hajar
    Dong, Ming
    Huang, Yinlun
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 140 (140)
  • [2] Wind Power Forecasting Using Attention-Based Recurrent Neural Networks: A Comparative Study
    Huang, Bin
    Liang, Yuying
    Qiu, Xiaolin
    IEEE ACCESS, 2021, 9 : 40432 - 40444
  • [3] Conformal Multistep-Ahead Multivariate Time-Series Forecasting
    Schlembach, Filip
    Smirnov, Evgueni
    Koprinska, Irena
    CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 179, 2022, 179
  • [4] A new boosting algorithm for improved time-series forecasting with recurrent neural networks
    Assaad, Mohammad
    Bone, Romuald
    Cardot, Hubert
    INFORMATION FUSION, 2008, 9 (01) : 41 - 55
  • [5] Comparing Recurrent Networks for Time-Series Forecasting
    Ferreira, Aida A.
    Ludermir, Teresa B.
    de Aquino, Ronaldo R. B.
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [6] Attention-Based Bidirectional Recurrent Neural Networks for Description Generation of Videos
    Du, Xiaotong
    Yuan, Jiabin
    Liu, Hu
    CLOUD COMPUTING AND SECURITY, PT VI, 2018, 11068 : 440 - 451
  • [7] A Neural Networks Based Method for Multivariate Time-Series Forecasting
    Li, Shaowei
    Huang, He
    Lu, Wei
    IEEE ACCESS, 2021, 9 : 63915 - 63924
  • [8] Deep Personalized Glucose Level Forecasting Using Attention-based Recurrent Neural Networks
    Armandpour, Mohammadreza
    Kidd, Brian
    Du, Yu
    Huang, Jianhua Z.
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [9] Implementation Of Recurrent Neural Network And Boosting Method For Time-Series Forecasting
    Soelaiman, Rully
    Martoyo, Arief
    Purwananto, Yudhi
    Purnomo, Mauridhi H.
    ICICI-BME: 2009 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, COMMUNICATION, INFORMATION TECHNOLOGY, AND BIOMEDICAL ENGINEERING, 2009, : 55 - +
  • [10] Time series forecasting by recurrent product unit neural networks
    F. Fernández-Navarro
    Maria Angeles de la Cruz
    P. A. Gutiérrez
    A. Castaño
    C. Hervás-Martínez
    Neural Computing and Applications, 2018, 29 : 779 - 791