ON A LOGARITHMIC COEFFICIENTS INEQUALITY FOR THE CLASS OF CLOSE-TO-CONVEX FUNCTIONS

被引:0
作者
Adegani, Ebrahim Analouei [1 ]
Motamednezhad, Ahmad [1 ]
Bulboaca, Teodor [2 ]
Lecko, Adam [3 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, POB 316-36155, Shahrood, Iran
[2] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[3] Univ Warmia & Mazury, Fac Math & Comp Sci, Dept Complex Anal, Ul Sloneczna 54, PL-10710 Olsztyn, Poland
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2023年 / 24卷 / 04期
关键词
univalent functions; starlike; convex and close-to-convex functions; subordination; subordination function; logarithmic coefficients; dilogarithm function;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In [Logarithmic coefficients problems in families related to starlike and convex functions, J. Aust. Math. Soc., 109, pp. 230-249, 2020] Ponnusamy et al. stated the conjecture for the sharp bounds of the logarithmic coefficients gamma n for f E F (3) as follows and infinity n-ary sumation n=1 ( ) |gamma n| 1 1- 1 , nEN, n 2n+1 |gamma n|2 pi 2 (1) ) (1 6 + 41Li2 -Li2 , 4 2 where Li2 is the Spence's (or dilogarithm) function. In this research we confirm that the conjecture for the above second is true under some additional conditions.
引用
收藏
页码:307 / 312
页数:6
相关论文
共 15 条
[1]   Solution of logarithmic coefficients conjectures for some classes of convex functions [J].
Adegani, Ebrahim Analouei ;
Bulboaca, Teodor ;
Mohammed, Nafya Hameed ;
Zaprawa, Pawel .
MATHEMATICA SLOVACA, 2023, 73 (01) :79-88
[2]   Logarithmic Coefficients for Classes Related to Convex Functions [J].
Alimohammadi, Davood ;
Adegani, Ebrahim Analouei ;
Bulboaca, Teodor ;
Cho, Nak Eun .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) :2659-2673
[3]  
[Anonymous], 2000, Monographs and Textbooks in Pure and Applied Mathematics
[4]   An extension of Briot-Bouquet differential subordinations with an application to Alexander integral transforms [J].
Antonino, Jose A. ;
Miller, Sanford S. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (01) :124-136
[5]  
Duren P L., 1983, Grundlehren der mathematischen Wissenschaften, VVol. 259
[6]   LOGARITHMIC COEFFICIENTS OF UNIVALENT-FUNCTIONS [J].
DUREN, PL ;
LEUNG, YJ .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 :36-43
[7]  
MILIN, 1977, TRANSL MATH MONOGR, V49
[8]  
Obradovic M, 2018, MONATSH MATH, V185, P489, DOI 10.1007/s00605-017-1024-3
[9]   Sharp inequalities for logarithmic coefficients and their applications [J].
Ponnusamy, Saminathan ;
Sugawa, Toshiyuki .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 166
[10]   LOGARITHMIC COEFFICIENTS PROBLEMS IN FAMILIES RELATED TO STARLIKE AND CONVEX FUNCTIONS [J].
Ponnusamy, Saminathan ;
Sharma, Navneet Lal ;
Wirths, Karl-Joachim .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (02) :230-249