Radiomic signatures of meningiomas using the Ki-67 proliferation index as a prognostic marker of clinical outcomes

被引:13
作者
Khanna, Omaditya [1 ]
Kazerooni, Anahita Fathi [3 ,4 ]
Arif, Sherjeel [3 ,4 ]
Mahtabfar, Aria [1 ]
Momin, Arbaz A. [1 ]
Andrews, Carrie E. [1 ]
Hafazalla, Karim [1 ]
Baldassari, Michael P. [1 ]
Velagapudi, Lohit [1 ]
Garcia, Jose A. [3 ,4 ]
Sako, Chiharu [3 ,4 ]
Farrell, Christopher J. [1 ]
Evans, James J. [1 ]
Judy, Kevin D. [1 ]
Andrews, David W. [1 ]
Flanders, Adam E. [2 ]
Shi, Wenyin [5 ,6 ]
Davatzikos, Christos [3 ,4 ]
机构
[1] Thomas Jefferson Univ Hosp, Dept Neurol Surg, Philadelphia, PA 19107 USA
[2] Thomas Jefferson Univ Hosp, Dept Radiol, Philadelphia, PA 19107 USA
[3] Univ Penn, Ctr Biomed Image Comp & Analyt, Perelman Sch Med, Philadelphia, PA USA
[4] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA USA
[5] Thomas Jefferson Univ, Sidney Kimmel Med Coll, Dept Radiat Oncol, Philadelphia, PA USA
[6] Thomas Jefferson Univ, Ctr Canc, Philadelphia, PA USA
关键词
meningioma; radiomics; machine learning; Ki-67 proliferation index; SIMPSON GRADING SYSTEM; SURGERY; MULTICENTER; SURVIVAL; CLASSIFICATION; RECURRENCE; PREDICT; GLIOMA; KI67;
D O I
10.3171/2023.3.FOCUS2337
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
OBJECTIVE The clinical behavior of meningiomas is not entirely captured by its designated WHO grade, therefore other factors must be elucidated that portend increased tumor aggressiveness and associated risk of recurrence. In this study, the authors identify multiparametric MRI radiomic signatures of meningiomas using Ki-67 as a prognostic marker of clinical outcomes independent of WHO grade. METHODS A retrospective analysis was conducted of all resected meningiomas between 2012 and 2018. Preoperative MR images were used for high-throughput radiomic feature extraction and subsequently used to develop a machine learning algorithm to stratify meningiomas based on Ki-67 indices < 5% and >= 5%, independent of WHO grade. Progression-free survival (PFS) was assessed based on machine learning prediction of Ki- 67 strata and compared with outcomes based on histopathological Ki-67. RESULTS Three hundred forty-three meningiomas were included: 291 with WHO grade I, 43 with grade II, and 9 with grade III. The overall rate of recurrence was 19.8% (15.1% in grade I, 44.2% in grade II, and 77.8% in grade III) over a median follow-up of 28.5 months. Grade II and III tumors had higher Ki-67 indices than grade I tumors, albeit tumor and peritumoral edema volumes had considerable variation independent of meningioma WHO grade. Forty- six highperforming radiomic features (1 morphological, 7 intensity-based, and 38 textural) were identified and used to build a support vector machine model to stratify tumors based on a Ki- 67 cutoff of 5%, with resultant areas under the curve of 0.83 (95% CI 0.78- 0.89) and 0.84 (95% CI 0.75-0.94) achieved for the discovery (n = 257) and validation (n = 86) data sets, respectively. Comparison of histopathological Ki-67 versus machine learning-predicted Ki- 67 showed excellent performance (overall accuracy > 80%), with classification of grade I meningiomas exhibiting the greatest accuracy. Prediction of Ki-67 by machine learning classifier revealed shorter PFS for meningiomas with Ki-67 indices >= 5% compared with tumors with Ki-67 < 5% (p < 0.0001, log-rank test), which corroborates divergent patient outcomes observed using histopathological Ki-67. CONCLUSIONS The Ki-67 proliferation index may serve as a surrogate marker of increased meningioma aggressiveness independent of WHO grade. Machine learning using radiomic feature analysis may be used for the preoperative prediction of meningioma Ki-67, which provides enhanced analytical insights to help improve diagnostic classification and guide patient-specific treatment strategies.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Meningiomas: Correlation of Ki67 with histological grade [J].
Babu, Sashidhar ;
Uppin, Shantveer G. ;
Uppin, Megha S. ;
Panigrahi, Manas Kumar ;
Saradhi, Vijay ;
Bhattacharjee, Suchanda ;
Sahu, B. P. ;
Purohit, A. K. ;
Challa, Sundaram .
NEUROLOGY INDIA, 2011, 59 (02) :204-207
[2]  
Bakas Spyridon, 2016, Brainlesion, V9556, P144, DOI [10.1007/978-3-319-30858-6_13, 10.1007/978-3-319-30858-6_1]
[3]   Multiple approaches converge on three biological subtypes of meningioma and extract new insights from published studies [J].
Bayley, James C. ;
Hadley, Caroline C. ;
Harmanci, Arif O. ;
Harmanci, Akdes S. ;
Klisch, Tiemo J. ;
Patel, Akash J. .
SCIENCE ADVANCES, 2022, 8 (05)
[4]   Spheno-Orbital Meningiomas: An Analysis Based on World Health Organization Classification and Ki-67 Proliferative Index [J].
Belinsky, Irina ;
Murchison, Ann P. ;
Evans, James J. ;
Andrews, David W. ;
Farrell, Christopher J. ;
Casey, James P. ;
Curtis, Mark T. ;
Choi, Kamila A. Nowak ;
Werner-Wasik, Maria ;
Bilyk, Jurij R. .
OPHTHALMIC PLASTIC AND RECONSTRUCTIVE SURGERY, 2018, 34 (02) :143-150
[5]   High risk of recurrence for grade II meningioma: a 10-year multicenter analysis of prognosis factors [J].
Bender, Laura ;
Somme, Francois ;
Lhermitte, Benoit ;
Ahle, Guido ;
Boone, Mathieu ;
Blonski, Marie ;
Pouget, Celso ;
Truc, Gilles ;
Cebula, Helene ;
Noel, Georges .
CHINESE CLINICAL ONCOLOGY, 2021, 10 (03)
[6]   Meningioma Genomics: Diagnostic, Prognostic, and Therapeutic Applications [J].
Bi, Wenya Linda ;
Zhang, Michael ;
Wu, Winona W. ;
Mei, Yu ;
Dunn, Ian F. .
FRONTIERS IN SURGERY, 2016, 3
[7]   Comparison of radiomic feature aggregation methods for patients with multiple tumors [J].
Chang, Enoch ;
Joel, Marina ;
Chang, Hannah Y. ;
Du, Justin ;
Khanna, Omaditya ;
Omuro, Antonio ;
Chiang, Veronica ;
Aneja, Sanjay .
SCIENTIFIC REPORTS, 2021, 11 (01)
[8]   Radiographic prediction of meningioma grade by semantic and radiomic features [J].
Coroller, Thibaud P. ;
Bi, Wenya Linda ;
Huynh, Elizabeth ;
Abedalthagafi, Malak ;
Aizer, Ayal A. ;
Greenwald, Noah F. ;
Parmar, Chintan ;
Narayan, Vivek ;
Wu, Winona W. ;
de Moura, Samuel Miranda ;
Gupta, Saksham ;
Beroukhim, Rameen ;
Wen, Patrick Y. ;
Al-Mefty, Ossama ;
Dunn, Ian F. ;
Santagata, Sandro ;
Alexander, Brian M. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
PLOS ONE, 2017, 12 (11)
[9]   AI-based prognostic imaging biomarkers for precision neuro-oncology: the ReSPOND consortium [J].
Davatzikos, Christos ;
Barnholtz-Sloan, Jill S. ;
Bakas, Spyridon ;
Colen, Rivka ;
Mahajan, Abhishek ;
Balana Quintero, Carmen ;
Capellades Font, Jaume ;
Puig, Josep ;
Jain, Rajan ;
Sloan, Andrew E. ;
Badve, Chaitra ;
Marcus, Daniel S. ;
Choi, Yoon Seong ;
Lee, Seung-Koo ;
Chang, Jong Hee ;
Poisson, Laila M. ;
Griffith, Brent ;
Dicker, Adam P. ;
Flanders, Adam E. ;
Booth, Thomas C. ;
Rathore, Saima ;
Akbari, Hamed ;
Sako, Chiharu ;
Bilello, Michel ;
Shukla, Gaurav ;
Kazerooni, Anahita Fathi ;
Brem, Steven ;
Lustig, Robert ;
Mohan, Suyash ;
Bagley, Stephen ;
Nasrallah, MacLean ;
O'Rourke, Donald M. .
NEURO-ONCOLOGY, 2020, 22 (06) :886-888
[10]   A molecularly integrated grade for meningioma [J].
Driver, Joseph ;
Hoffman, Samantha E. ;
Tavakol, Sherwin ;
Woodward, Eleanor ;
Maury, Eduardo A. ;
Bhave, Varun ;
Greenwald, Noah F. ;
Nassiri, Farshad ;
Aldape, Kenneth ;
Zadeh, Gelareh ;
Choudhury, Abrar ;
Vasudevan, Harish N. ;
Magill, Stephen T. ;
Raleigh, David R. ;
Abedalthagafi, Malak ;
Aizer, Ayal A. ;
Alexander, Brian M. ;
Ligon, Keith L. ;
Reardon, David A. ;
Wen, Patrick Y. ;
Al-Mefty, Ossama ;
Ligon, Azra H. ;
Dubuc, Adrian M. ;
Beroukhim, Rameen ;
Claus, Elizabeth B. ;
Dunn, Ian F. ;
Santagata, Sandro ;
Bi, Wenya Linda .
NEURO-ONCOLOGY, 2022, 24 (05) :796-808