Electrochemical impedance spectroscopy beyond linearity and stationarity-A critical review

被引:42
作者
Hallemans, Noel [1 ,2 ]
Howey, David [3 ,4 ]
Battistel, Alberto [5 ]
Saniee, Nessa Fereshteh [2 ]
Scarpioni, Federico [6 ]
Wouters, Benny [7 ]
La Mantia, Fabio [6 ,8 ]
Hubin, Annick [7 ]
Widanage, Widanalage Dhammika [2 ,4 ]
Lataire, John [1 ]
机构
[1] Vrije Univ Brussel, Res Grp Fundamental Elect & Instrumentat, Pleinlaan 2, B-1050 Brussels, Belgium
[2] Univ Warwick, WMG, Coventry 7AL CV4, England
[3] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[4] Harwell Sci & Innovat Campus, Faraday Inst Quad One, Didcot, England
[5] Furtwangen Univ, Inst Tech Med, Jakob Kienzle Str 17, D-78054 Villingen Schwenningen, Germany
[6] Fraunhofer Inst Mfg Technol & Adv Mat IFAM, Wiener Str 12, D-28359 Bremen, Germany
[7] Vrije Univ Brussel, Res Grp Electrochem & Surface Engn, Pleinlaan 2, B-1050 Brussels, Belgium
[8] Bremen Univ, Energy Storage & Energy Convers Syst, Wiener Str 12, D-28359 Bremen, Germany
基金
“创新英国”项目; 欧洲研究理事会;
关键词
EIS; Dynamic EIS; NLEIS; Multisine; Nonlinearity; Nonstationarity; Frequency domain; Li-ion; Battery; FARADAIC ADMITTANCE MEASUREMENTS; LITHIUM-ION BATTERIES; INTERMODULATED NONLINEAR-ANALYSIS; KRAMERS-KRONIG TRANSFORMS; DYNAMIC IMPEDANCE; DEGRADATION MODES; REDOX COUPLE; FREQUENCY; BEHAVIOR; CORROSION;
D O I
10.1016/j.electacta.2023.142939
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrochemical impedance spectroscopy (EIS) is a widely used experimental technique for characterising ma-terials and electrode reactions by observing their frequency-dependent impedance. Classical EIS measurements require the electrochemical process to behave as a linear time-invariant system. However, electrochemical processes do not naturally satisfy this assumption: the relation between voltage and current is inherently nonlinear and evolves over time. Examples include the corrosion of metal substrates and the cycling of Li -ion batteries. As such, classical EIS only offers models linearised at specific operating points. During the last decade, solutions were developed for estimating nonlinear and time-varying impedances, contributing to more general models. In this paper, we review the concept of impedance beyond linearity and stationarity, and detail different methods to estimate this from measured current and voltage data, with emphasis on frequency domain approaches using multisine excitation. In addition to a mathematical discussion, we measure and provide examples demonstrating impedance estimation for a Li-ion battery, beyond linearity and stationarity, both while resting and while charging.
引用
收藏
页数:23
相关论文
共 132 条
[1]   Application of measurement models to impedance spectroscopy .3. Evaluation of consistency with the Kramers-Kronig relations [J].
Agarwal, P ;
Orazem, ME ;
GarciaRubio, LH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (12) :4159-4168
[2]   Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation [J].
Andre, D. ;
Meiler, M. ;
Steiner, K. ;
Wimmer, Ch ;
Soczka-Guth, T. ;
Sauer, D. U. .
JOURNAL OF POWER SOURCES, 2011, 196 (12) :5334-5341
[3]   Review-"Knees" in Lithium-Ion Battery Aging Trajectories [J].
Attia, Peter M. ;
Bills, Alexander ;
Brosa Planella, Ferran ;
Dechent, Philipp ;
dos Reis, Goncalo ;
Dubarry, Matthieu ;
Gasper, Paul ;
Gilchrist, Richard ;
Greenbank, Samuel ;
Howey, David ;
Liu, Ouyang ;
Khoo, Edwin ;
Preger, Yuliya ;
Soni, Abhishek ;
Sripad, Shashank ;
Stefanopoulou, Anna G. ;
Sulzer, Valentin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)
[4]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[5]   On the physical definition of dynamic impedance: How to design an optimal strategy for data extraction [J].
Battistel, Alberto ;
La Mantia, Fabio .
ELECTROCHIMICA ACTA, 2019, 304 :513-520
[6]   Intermodulated non-linear analysis of a redox couple in solution. 2. Experimental results [J].
Battistel, Alberto ;
Petkovic, Andjela ;
La Mantia, Fabio .
ELECTROCHIMICA ACTA, 2015, 176 :1492-1499
[7]   Intermodulated non-linear analysis of a redox couple in solution. 1. The model [J].
Battistel, Alberto ;
La Mantia, Fabio .
ELECTROCHIMICA ACTA, 2015, 176 :1484-1491
[8]   Nonlinear Analysis: The Intermodulated Differential Immittance Spectroscopy [J].
Battistel, Alberto ;
La Mantia, Fabio .
ANALYTICAL CHEMISTRY, 2013, 85 (14) :6799-6805
[9]  
Bendat J.S., 1993, Engineering Applications of Correlation and Spectral Analysis, V2nd
[10]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587