Human VH-based chimeric antigen receptor T cells targeting glypican 3 eliminate tumors in preclinical models of HCC

被引:6
作者
Kolluri, Aarti [1 ,2 ]
Li, Dan [1 ]
Li, Nan [1 ]
Duan, Zhijian [3 ]
Roberts, Lewis R. [4 ]
Ho, Mitchell [1 ,3 ]
机构
[1] Natl Canc Inst, Antibody Therapy Sect, Ctr Canc Res, Lab Mol Biol, Bethesda, MD USA
[2] Mayo Clin, Grad Sch Biomed Sci, Rochester, MN USA
[3] Natl Canc Inst, Antibody Engn Program, Ctr Canc Res, Bethesda, MD USA
[4] Mayo Clin, Div Gastroenterol & Hepatol, Coll Med & Sci, Rochester, MN USA
关键词
SINGLE-DOMAIN ANTIBODY; HEPATOCELLULAR CARCINOMAS; CANCER REGRESSION; PERSISTENCE; GENE; EXPANSION; MOUSE;
D O I
10.1097/HC9.0000000000000022
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and Aims: Efficacy of chimeric antigen receptor (CAR) T cells for treating solid tumors, including HCC, remains a challenge. Nanobodies are emerging building blocks of CAR T cells due to their small size and high expression. Membrane proximal sites have been shown as attractive epitopes of CAR T cells. However, current CAR formats are not tailored toward nanobodies or targeting membrane distal epitopes. Approach and Results: Using hYP7 Fv (membrane proximal) and HN3 V-H nanobody (membrane distal) as GPC3 targeting elements, we sought to determine how hinges and transmembrane portions of varying structures and sizes affect CAR T-cell function. We generated multiple permutations of CAR T cells containing CD8, CD28, IgG4, and Fc domains. We show that engineered HN3 CAR T cells can be improved by 2 independent, synergistic changes in the hinge and transmembrane domains. The T cells expressing the HN3 CAR which contains the hinge region of IgG4 and the CD28 transmembrane domain (HN3-IgG4H-CD28TM) exhibited high cytotoxic activity and caused complete HCC tumor eradication in immunodeficient mice. HN3-IgG4H-CD28TM CAR T cells were enriched for cytotoxic-memory CD8(+) T cells and NFAT signals, and reduced beta catenin levels in HCC cells. Conclusion: Our findings indicate that altering the hinge and transmembrane domains of a nanobody-based CAR targeting a distal GPC3 epitope, in contrast to a membrane proximal epitope, lead to robust T-cell signaling and induce swift and durable eradication of HCC tumors.
引用
收藏
页数:13
相关论文
共 39 条
[21]   PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells [J].
Zheng, Wenting ;
O'Hear, Carol E. ;
Alli, Rajshekhar ;
Basham, Jacob H. ;
Abdelsamed, Hossam A. ;
Palmer, Lance E. ;
Jones, Lindsay L. ;
Youngblood, Ben ;
Geiger, Terrence L. .
LEUKEMIA, 2018, 32 (05) :1157-1167
[22]   A chimeric antigen receptor-based cellular safeguard mechanism for selective in vivo depletion of engineered T cells [J].
Svec, Mortimer ;
Doetsch, Sarah ;
Warmuth, Linda ;
Trebo, Manuel ;
Fraessle, Simon ;
Riddell, Stanley R. ;
Jaeger, Ulrich ;
D'Ippolito, Elvira ;
Busch, Dirk H. .
FRONTIERS IN IMMUNOLOGY, 2024, 14
[23]   Chimeric Antigen Receptor (CAR) T Cells: Lessons Learned from Targeting of CD19 in B-Cell Malignancies [J].
Hay, Kevin A. ;
Turtle, Cameron J. .
DRUGS, 2017, 77 (03) :237-245
[24]   GD2 chimeric antigen receptor modified T cells in synergy with sub-toxic level of doxorubicin targeting osteosarcomas [J].
Chulanetra, Monrat ;
Morchang, Atthapan ;
Sayour, Elias ;
Eldjerou, Lamis ;
Milner, Rowan ;
Lagmay, Joanne ;
Cascio, Matt ;
Stover, Brian ;
Slayton, William ;
Chaicumpa, Wanpen ;
Yenchitsomanus, Pa-Thai ;
Chang, Lung-Ji .
AMERICAN JOURNAL OF CANCER RESEARCH, 2020, 10 (02) :674-+
[25]   Chimeric Antigen Receptor-Engineered Human Gamma Delta T Cells: Enhanced Cytotoxicity with Retention of Cross Presentation [J].
Capsomidis, Anna ;
Benthall, Gabriel ;
Van Acker, Heleen H. ;
Fisher, Jonathan ;
Kramer, Anne M. ;
Abeln, Zarah ;
Majani, Yvonne ;
Gileadi, Talia ;
Wallace, Rebecca ;
Gustafsson, Kenth ;
Flutter, Barry ;
Anderson, John .
MOLECULAR THERAPY, 2018, 26 (02) :354-365
[26]   Dual Targeting of Mesothelin and CD19 with Chimeric Antigen Receptor-Modified T Cells in Patients with Metastatic Pancreatic Cancer [J].
Ko, Andrew H. ;
Jordan, Alexander C. ;
Tooker, Evan ;
Lacey, Simon F. ;
Chang, Renee B. ;
Li, Yan ;
Venook, Alan P. ;
Tempero, Margaret ;
Damon, Lloyd ;
Fong, Lawrence ;
O'Hara, Mark H. ;
Levine, Bruce L. ;
Melenhorst, J. Joseph ;
Plesa, Gabriela ;
June, Carl H. ;
Beatty, Gregory L. .
MOLECULAR THERAPY, 2020, 28 (11) :2367-2378
[27]   Construction and functional characterization of a fully human anti-CD19 chimeric antigen receptor (huCAR)-expressing primary human T cells [J].
Mirzaei, Hamid Reza ;
Jamali, Arezoo ;
Jafarzadeh, Leila ;
Masoumi, Elham ;
Alishah, Khadijeh ;
Mehrjardi, Keyvan Fallah ;
Emami, Seyed Amir Hossein ;
Noorbakhsh, Farshid ;
Till, Brian G. ;
Hadjati, Jamshid .
JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (06) :9207-9215
[28]   T cells redirected by a CD3ζ chimeric antigen receptor can establish self-antigen-specific tumour protection in the long term [J].
Chmielewski, M. ;
Rappl, G. ;
Hombach, A. A. ;
Abken, H. .
GENE THERAPY, 2013, 20 (02) :177-186
[29]   Man's Best Friend: Utilizing Naturally Occurring Tumors in Dogs to Improve Chimeric Antigen Receptor T-cell Therapy for Human Cancers [J].
Mata, Melinda ;
Gottschalk, Stephen .
MOLECULAR THERAPY, 2016, 24 (09) :1511-1512
[30]   Tumor-Targeted Human T Cells Expressing CD28-Based Chimeric Antigen Receptors Circumvent CTLA-4 Inhibition [J].
Condomines, Maud ;
Arnason, Jon ;
Benjamin, Reuben ;
Gunset, Gertrude ;
Plotkin, Jason ;
Sadelain, Michel .
PLOS ONE, 2015, 10 (06)