EXISTENCE OF CONSTANT SIGN AND NODAL SOLUTIONS FOR A CLASS OF (p, q)-LAPLACIAN-KIRCHHOFF PROBLEMS

被引:2
作者
Yang, Jie [1 ]
Chen, Haibo [2 ]
机构
[1] Huaihua Univ, Sch Math & Computat Sci, Huaihua 418008, Peoples R China
[2] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Peoples R China
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2023年 / 7卷 / 03期
基金
中国国家自然科学基金;
关键词
p-q)-Laplacian; Kirchhoff type equation; Nodal solution; Nehari manifold; KIRCHHOFF-TYPE PROBLEM; P-LAPLACIAN; POSITIVE SOLUTIONS; CONCENTRATION BEHAVIOR; NONTRIVIAL SOLUTION; ELLIPTIC-EQUATIONS; CHANGING SOLUTIONS; CRITICAL GROWTH; SUPERLINEAR (P; MULTIPLICITY;
D O I
10.23952/jnva.7.2023.3.02
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to studying a (p, q)-Laplacian-Kirchhoff type equation. We prove the existence of three bounded solutions (one positive, one negative, and one nodal with precisely two nodal domains) by applying the Nehari manifold along with a quantitative deformation lemma and truncation technique.
引用
收藏
页码:345 / 365
页数:21
相关论文
共 32 条
[1]   A multiplicity result for a (p, q)-Schrodinger-Kirchhoff type equation [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) :943-984
[2]  
Ambrosio V, 2021, Z ANGEW MATH PHYS, V72, DOI 10.1007/s00033-020-01466-7
[3]  
[Anonymous], 1996, Minimax theorems, DOI DOI 10.1007/978-1-4612-4146-1
[4]   On a class of superlinear (p, q)-Laplacian type equations on RN [J].
Bartolo, R. ;
Candela, A. M. ;
Salvatore, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (01) :29-41
[5]   Multiplicity results for a class of asymptotically p-linear equations on RN [J].
Bartolo, Rossella ;
Candela, Anna Maria ;
Salvatore, Addolorata .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (01)
[6]  
Cerami G., 1978, I LOMBARDO ACCAD S A, V112, P332
[7]   Existence of a nontrivial solution for the (p, q)-Laplacian in RN without the Ambrosetti-Rabinowitz condition [J].
Chaves, Marcio Fialho ;
Ercole, Grey ;
Miyagaki, Olimpio Hiroshi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 114 :133-141
[8]   Multiple solutions for the Schrodinger equations with sign-changing potential and Hartree nonlinearity [J].
Che, Guofeng ;
Chen, Haibo .
APPLIED MATHEMATICS LETTERS, 2018, 81 :21-26
[9]   On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian [J].
Cherfils, L ;
Il'Yasov, Y .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :9-22
[10]   The Brezis-Nirenberg type problem for the p-laplacian (1 < p < 2): Multiple positive solutions [J].
Cingolani, Silvia ;
Vannella, Giuseppina .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (08) :4510-4532