Methane Pyrolysis Using a Multiphase Molten Metal Reactor

被引:11
|
作者
Sorcar, Saurav [1 ]
Rosen, Brian A. [1 ]
机构
[1] Tel Aviv Univ, Dept Mat Sci & Engn, IL-69978001 Ramat Aviv, Israel
关键词
methane; pyrolysis; molten; activationenergy; bubble; nickel; tin; HYDROGEN-PRODUCTION; CO2; MITIGATION; DECOMPOSITION; CATALYSTS; NANOTUBES;
D O I
10.1021/acscatal.3c02955
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methane pyrolysis is a unique approach toward generatinghydrogenand valuable carbon products, with the added advantage of low to near-zeroCO(2) emissions. Currently, the most popular method for hydrogenproduction is steam methane reforming, which generates more than 10kg of CO2 for every 1 kg of hydrogen. By comparison, methanepyrolysis produces hydrogen and solid carbon with no CO x biproduct. Methane pyrolysis on a conventional solid catalyst exhibits low activation energy, but the carbon coproductcannot be separated and rapidly poisons the surface (coking). On theother hand, molten liquid metal catalysts have been shown to havethe advantage of separatable carbon, but their high activation energylimits the rate of the reaction and potential for economic industrialization.In this work, methane pyrolysis was shown using a multiphase moltenmetal reactor where both liquid and solid metal alloy catalysts were in equilibrium. Catalytic measurements using a Sn-Ni meltshowed that operating the reactor in the two-phase region of the Sn-Niphase diagram decreased the apparent activation energy from 355 kJ/molin the liquid-only melt to 158 kJ/mol, all while maintaining the abilityto separate and recover graphitic carbon.
引用
收藏
页码:10161 / 10166
页数:6
相关论文
共 50 条
  • [1] Molten metal capillary reactor for the high-temperature pyrolysis of methane
    Parra, Alejandro A. Munera
    Agar, David W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (19) : 13641 - 13648
  • [2] Decarbonisation of fossil energy via methane pyrolysis using two reactor concepts: Fluid wall flow reactor and molten metal capillary reactor
    Schultz, Ina
    Agar, David W.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (35) : 11422 - 11427
  • [3] Hydrogen Production by Methane Pyrolysis in a Molten-Metal Bubble Column
    Zaghloul, Nada
    Kodama, Satoshi
    Sekiguchi, Hidetoshi
    CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (11) : 1986 - 1993
  • [4] A multi-purpose pilot-scale molten metal & molten salt pyrolysis reactor
    Riedewald, Frank
    Povey, Ian
    O'Mahoney, Maria
    Sousa-Gallagher, Maria
    METHODSX, 2022, 9
  • [5] Improved Method for Methane Pyrolysis Rate Measurement using Molten Metal Catalysts for Turquoise Hydrogen Production
    Wi, Tae-Gyu
    Park, Young-Joon
    Lee, Uendo
    Kang, Youn-Bae
    JOURNAL OF SUSTAINABLE METALLURGY, 2025, 11 (01) : 248 - 263
  • [6] Low-carbon hydrogen production by molten metal-catalyzed methane pyrolysis: Catalysts, reactor design, and process development
    Ingale, G. U.
    Park, D. H.
    Yang, C. W.
    Kwon, H. M.
    Wi, T. G.
    Park, Y. J.
    Kim, S.
    Kang, Y. B.
    Lim, Y. I.
    Kim, S. W.
    Lee, U. D.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 208
  • [7] A low carbon methanol process using natural gas pyrolysis in a catalytic molten metal bubble reactor
    Catalan, Lionel J. J.
    Roberts, Braeden
    Rezaei, Ebrahim
    CHEMICAL ENGINEERING JOURNAL, 2023, 462
  • [8] Methane Pyrolysis for Hydrogen Production: Specific Features of Using Molten Metals
    Parfenov, V. E.
    Nikitchenko, N., V
    Pimenov, A. A.
    Kuz'min, A. E.
    Kulikova, M., V
    Chupichev, O. B.
    Maksimov, A. L.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2020, 93 (05) : 625 - 632
  • [9] Methane Pyrolysis for Hydrogen Production: Specific Features of Using Molten Metals
    V. E. Parfenov
    N. V. Nikitchenko
    A. A. Pimenov
    A. E. Kuz’min
    M. V. Kulikova
    O. B. Chupichev
    A. L. Maksimov
    Russian Journal of Applied Chemistry, 2020, 93 : 625 - 632
  • [10] Thermal Methane Cracking on Molten Metal: Kinetics Modeling for Pilot Reactor Design
    Palo, Emma
    Cosentino, Vittoria
    Iaquaniello, Gaetano
    Piemonte, Vincenzo
    Busillo, Emmanuel
    PROCESSES, 2023, 11 (05)