Recent Progress in Electrolyte Additives for Highly Reversible Zinc Anodes in Aqueous Zinc Batteries

被引:16
作者
Shen, Qibin [1 ]
Wang, Yuanduo [1 ]
Han, Guanjie [1 ]
Li, Xin [1 ]
Yuan, Tao [1 ]
Sun, Hao [1 ]
Gong, Yinyan [2 ]
Chen, Taiqiang [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat Chem, Shanghai 200093, Peoples R China
[2] China Jiliang Univ, Coll Opt & Elect Technol, Key Lab Rare Earth Optoelect Mat & Devices Zhejian, Hangzhou 310020, Peoples R China
来源
BATTERIES-BASEL | 2023年 / 9卷 / 05期
基金
美国国家科学基金会;
关键词
zinc batteries; electrolyte additives; zinc metal anode; zinc dendrites; side reactions; DENDRITIC GROWTH; ION; PERSPECTIVES; DEPOSITION; OXIDES;
D O I
10.3390/batteries9050284
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Aqueous zinc batteries (AZBs) are one of the most promising large-scale energy storage devices by virtue of their high specific capacity, high degree of safety, non-toxicity, and significant economic benefits. However, Zn anodes in aqueous electrolyte suffer from zinc dendrites and side reactions, which lead to a low coulombic efficiency and short life cycle of the cell. Since electrolytes play a key role in the Zn plating/stripping process, versatile strategies have been developed for designing an electrolyte to handle these issues. Among these strategies, electrolyte additives are considered to be promising for practical application because of the advantages of low cost and simplicity. Moreover, the resulting electrolyte can maximally preserve the merits of the aqueous electrolyte. The availability and effectiveness of additives have been demonstrated by tens of research works. Up to now, it has been essential and timely to systematically overview the progress of electrolyte additives in mild acidic/neutral electrolytes. These additives are classified as metal ion additives, surfactant additives, SEI film-forming additives, and complexing additives, according to their functions and mechanisms. For each category of additives, their functional mechanisms, as well as the latest developments, are comprehensively elaborated. Finally, some perspectives into the future development of additives for advanced AZBs are presented.
引用
收藏
页数:16
相关论文
共 75 条
[1]   Elimination of Zinc Dendrites by Graphene Oxide Electrolyte Additive for Zinc-Ion Batteries [J].
Abdulla, Jufni ;
Cao, Jin ;
Zhang, Dongdong ;
Zhang, Xinyu ;
Sriprachuabwong, Chakrit ;
Kheawhom, Soorathep ;
Wangyao, Panyawat ;
Qin, Jiaqian .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) :4602-4609
[2]   Suppressing Dendritic Growth during Alkaline Zinc Electrodeposition using Polyethylenimine Additive [J].
Banik, Stephen J. ;
Akolkar, Rohan .
ELECTROCHIMICA ACTA, 2015, 179 :475-481
[3]   Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies [J].
Bayaguud, Aruuhan ;
Fu, Yanpeng ;
Zhu, Changbao .
JOURNAL OF ENERGY CHEMISTRY, 2022, 64 (246-262) :246-262
[4]   Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries [J].
Bayaguud, Aruuhan ;
Luo, Xiao ;
Fu, Yanpeng ;
Zhu, Changbao .
ACS ENERGY LETTERS, 2020, 5 (09) :3012-3020
[5]   Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries [J].
Cao, Jin ;
Zhang, Dongdong ;
Zhang, Xinyu ;
Zeng, Zhiyuan ;
Qin, Jiaqian ;
Huang, Yunhui .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) :499-528
[6]   Fluorinated interphase enables reversible aqueous zinc battery chemistries [J].
Cao, Longsheng ;
Li, Dan ;
Pollard, Travis ;
Deng, Tao ;
Zhang, Bao ;
Yang, Chongyin ;
Chen, Long ;
Vatamanu, Jenel ;
Hu, Enyuan ;
Hourwitz, Matt J. ;
Ma, Lin ;
Ding, Michael ;
Li, Qin ;
Hou, Singyuk ;
Gaskell, Karen ;
Fourkas, John T. ;
Yang, Xiao-Qing ;
Xu, Kang ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2021, 16 (08) :902-+
[7]   Inhibition Role of Trace Metal Ion Additives on Zinc Dendrites during Plating and Striping Processes [J].
Chang, Ge ;
Liu, Shijun ;
Fu, Yanan ;
Hao, Xin ;
Jin, Wei ;
Ji, Xiaobo ;
Hu, Jiugang .
ADVANCED MATERIALS INTERFACES, 2019, 6 (23)
[8]   Arginine Cations Inhibiting Charge Accumulation of Dendrites and Boosting Zn Metal Reversibility in Aqueous Rechargeable Batteries [J].
Chen, Zehai ;
Chen, Hongzhan ;
Che, Youcai ;
Cheng, Luo ;
Zhang, Hao ;
Chen, Jian ;
Xie, Fangyan ;
Wang, Nan ;
Jin, Yanshuo ;
Meng, Hui .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (19) :6855-6863
[9]   Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance [J].
Dai, Xi ;
Wan, Fang ;
Zhang, Linlin ;
Cao, Hongmei ;
Niu, Zhiqiang .
ENERGY STORAGE MATERIALS, 2019, 17 :143-150
[10]   An Overview and Future Perspectives of Aluminum Batteries [J].
Elia, Giuseppe Antonio ;
Marquardt, Krystan ;
Hoeppner, Katrin ;
Fantini, Sebastien ;
Lin, Rongying ;
Knipping, Etienne ;
Peters, Willi ;
Drillet, Jean-Francois ;
Passerini, Stefano ;
Hahn, Robert .
ADVANCED MATERIALS, 2016, 28 (35) :7564-7579