Ensemble Learning and Voltage Reconstruction Based State of Health Estimation for Lithium-Ion Batteries With Twenty Random Samplings

被引:13
|
作者
Shu, Xing [1 ]
Chen, Zheng [1 ]
Shen, Jiangwei [1 ]
Shen, Shiquan [1 ]
Guo, Fengxiang [1 ]
Zhang, Yuanjian [2 ]
Liu, Yonggang [3 ,4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Transportat Engn, Kunming 650500, Peoples R China
[2] Loughborough Univ, Dept Aeronaut & Automot Engn, Loughborough LE1 13TU, Leics, England
[3] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[4] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Estimation; Feature extraction; Voltage; Batteries; Voltage measurement; Lithium-ion batteries; Behavioral sciences; Ensemble learning (EL); feature extraction; random charging data; state of health (SOH); voltage reconstruction;
D O I
10.1109/TPEL.2023.3235872
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate estimation of state of health (SOH) is critical for the safe and efficient operation of lithium-ion batteries in electric transport tools. However, the random charge/discharge behaviors complicate online SOH estimation and discount estimation accuracy. To overcome this difficulty, this study presents an ensemble learning and voltage reconstruction-based SOH estimation framework through the incorporation of individual estimators and with the consideration of limited charging data. First, by analyzing more than 100 000 charging behaviors, the difficulty of feature extraction is addressed based on voltage distribution. Then, a voltage shape fitting method combing mechanistic and prognostic model is developed to reconstruct the constant current charge voltage, and the model parameters are identified by the moth-flame optimization algorithm. Next, the extreme learning machine and random forest are leveraged to estimate SOH preliminarily from the random discontinuous charging points with preferable diversity and high efficiency. On this basis, an induced ordered weighted averaging operator is exploited to efficiently integrate the individual learners and adaptively update the weight of each learner, thereby achieving better estimation than individual ones. The experimental results manifest that the SOH can be reliably estimated within an error of 3.42% using only 20 random samplings.
引用
收藏
页码:5538 / 5548
页数:11
相关论文
共 50 条
  • [21] State of Health Estimation for Lithium-Ion Batteries Using Voltage Curves Reconstruction by Conditional Generative Adversarial Network
    Liu, Xinghua
    Gao, Zhichao
    Tian, Jiaqiang
    Wei, Zhongbao
    Fang, Changqing
    Wang, Peng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (04): : 10557 - 10567
  • [22] An Ensemble Learning-Based Data-Driven Method for Online State-of-Health Estimation of Lithium-Ion Batteries
    Gou, Bin
    Xu, Yan
    Feng, Xue
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2021, 7 (02): : 422 - 436
  • [23] State of Health Estimation of Lithium-Ion Batteries Based on Dual Charging State
    Lu D.
    Chen Z.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2022, 56 (03): : 342 - 352
  • [24] State Of Health Estimation of Lithium-ion Batteries Based On Regression Techniques
    Azizi, Chaima
    Ben Ali, Jaouher
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 493 - 498
  • [25] State of charge and state of health estimation of Lithium-Ion batteries
    Buchman, Attila
    Lung, Claudiu
    2018 IEEE 24TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2018, : 382 - 385
  • [26] State of Health Estimation Methods for Lithium-Ion Batteries
    Nuroldayeva, Gulzat
    Serik, Yerkin
    Adair, Desmond
    Uzakbaiuly, Berik
    Bakenov, Zhumabay
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023 (NA)
  • [27] Wavelet Based Relative State of Health Estimation for Lithium-Ion Batteries
    Xu, Jun
    Mei, Xuesong
    Wang, Xiao
    Zhao, Yunfei
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 3101 - 3106
  • [28] Lithium-Ion Battery State of health Monitoring Based on Ensemble Learning
    Li, Yuanyuan
    Zhong, Shouming
    Zhong, Qishui
    Shi, Kaibo
    IEEE ACCESS, 2019, 7 : 8754 - 8762
  • [29] Lithium-ion battery state of health monitoring based on ensemble learning
    Li, Yuanyuan
    Sheng, Hanmin
    Cheng, Yuhua
    Kuang, Hongjun
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 554 - 559
  • [30] State of health estimation of lithium-ion batteries based on the regional triangle
    Zhang, Ya
    Cai, Yongxiang
    Liu, Wei
    Dou, Zhenlan
    Yao, Bin
    Zhang, Bide
    Liao, Qiangqiang
    Fu, Zaiguo
    Cheng, Zhiyuan
    JOURNAL OF ENERGY STORAGE, 2023, 69