Radiomics analysis of lung CT for multidrug resistance prediction in active tuberculosis: a multicentre study

被引:13
作者
Li, Ye [1 ]
Xu, Zexuan [1 ]
Lv, Xinna [1 ]
Li, Chenghai [1 ]
He, Wei [1 ]
Lv, Yan [1 ]
Hou, Dailun [1 ]
机构
[1] Capital Med Univ, Beijing Chest Hosp, Dept Radiol, Beijing 101149, Peoples R China
关键词
Pulmonary tuberculosis; Drug resistance; Radiomics; Machine learning; PULMONARY TUBERCULOSIS; MANAGEMENT;
D O I
10.1007/s00330-023-09589-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesMultidrug-resistant TB (MDR-TB) is a severe burden and public health threat worldwide. This study aimed to develop a radiomics model based on the tree-in-bud (TIB) sign and nodules and validate its predictive performance for MDR-TB.MethodsWe retrospectively recruited 454 patients with proven active TB from two hospitals and classified them into three training and testing cohorts: TIB (n = 295, 102), nodules (n = 302, 97), and their combination (n = 261, 81). Radiomics features relating to TIB and nodules were separately extracted. The maximal information coefficient and recursive feature elimination were used to select informative features per the two signs. Two radiomics models were constructed to predict MDR-TB using a random forest classifier. Then, a combined model was built incorporating radiomics features based on these two signs. The capability of the models in the combined training and testing cohorts was validated with ROC curves.ResultsSixteen features were extracted from TIB and 15 from nodules. The AUCs of the combined model were slightly higher than those of the TIB model in the combined training cohort (0.911 versus 0.877, p > 0.05) and testing cohort (0.820 versus 0.786, p < 0.05) and similar to the performance of the nodules model in the combined training cohort (0.911 versus 0.933, p > 0.05) and testing cohort (0.820 versus 0.855, p > 0.05).ConclusionsThe CT-based radiomics models hold promise for use as a non-invasive tool in the prediction of MDR-TB.
引用
收藏
页码:6308 / 6317
页数:10
相关论文
共 31 条
[1]   WHO's Global Tuberculosis Report 2022 [J].
Bagcchi, Sanjeet .
LANCET MICROBE, 2023, 4 (01) :E20-E20
[2]   Evaluation of Pulmonary Nodules Clinical Practice Consensus Guidelines for Asia [J].
Bai, Chunxue ;
Choi, Chang-Min ;
Chu, Chung Ming ;
Anantham, Devanand ;
Ho, James Chung-man ;
Khan, Ali Zamir ;
Lee, Jang-Ming ;
Li, Shi Yue ;
Saenghirunvattana, Sawang ;
Yim, Anthony .
CHEST, 2016, 150 (04) :877-893
[3]   Clinical risk factors associated with multidrug-resistant tuberculosis (MDR-TB) in Mali [J].
Baya, Bocar ;
Achenbach, Chad J. ;
Kone, Bourahima ;
Toloba, Yacouba ;
Dabitao, Djeneba K. ;
Diarra, Bassirou ;
Goita, Drissa ;
Diabate, Seydou ;
Maiga, Mamoudou ;
Soumare, Dianguina ;
Ouattara, Khadidia ;
Kanoute, Tenin ;
Berthe, Gaoussou ;
Kamia, Youssouf M. ;
Sarro, Yeya Dit Sadio ;
Sanogo, Moumine ;
Togo, Antieme C. G. ;
Dembele, Bindongo P. P. ;
Coulibaly, Nadie ;
Kone, Amadou ;
Akanbi, Maxwell ;
Belson, Michael ;
Dao, Sounkalo ;
Orsega, Susan ;
Siddiqui, Sophia ;
Doumbia, Seydou ;
Murphy, Robert L. ;
Diallo, Souleymane .
INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2019, 81 :149-155
[4]  
Breiman L, 2001, MACH LEARN, V45, P5, DOI [10.1186/s12859-018-2419-4, 10.3322/caac.21834]
[5]   How radiology can help pulmonary tuberculosis diagnosis: analysis of 49 patients [J].
Carlesi, Edoardo ;
Orlandi, Martina ;
Mencarini, Jessica ;
Bartalesi, Filippo ;
Lorini, Chiara ;
Bonaccorsi, Guglielmo ;
Macconi, Letizia ;
Selvi, Valeria ;
Bartoloni, Alessandro ;
Colagrande, Stefano .
RADIOLOGIA MEDICA, 2019, 124 (09) :838-845
[6]   Radiological Findings of Extensively Drug-Resistant Pulmonary Tuberculosis in Non-AIDS Adults: Comparisons with Findings of Multidrug-Resistant and Drug-Sensitive Tuberculosis [J].
Cha, Jihoon ;
Lee, Ho Yun ;
Lee, Kyung Soo ;
Koh, Won-Jung ;
Kwon, O. Jung ;
Yi, Chin A. ;
Kim, Tae Sung ;
Chung, Myung Jin .
KOREAN JOURNAL OF RADIOLOGY, 2009, 10 (03) :207-216
[7]   The Lancet Respiratory Medicine Commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosis [J].
Dheda, Keertan ;
Gumbo, Tawanda ;
Maartens, Gary ;
Dooley, Kelly E. ;
Murray, Megan ;
Furin, Jennifer ;
Nardell, Edward A. ;
Warren, Robin M. ;
Esmail, Aliasgar ;
London, Leslie ;
Lessem, Erica ;
Limberis, Jason ;
Theron, Grant ;
McNerney, Ruth ;
Niemann, Stefan ;
Dowdy, David ;
Van Rie, Annelies ;
Pasipanodya, Jotam G. ;
Rodrigues, Camilla ;
Clark, Taane G. ;
Sirgel, Frik A. ;
Schaaf, H. Simon ;
Chang, Kwok Chiu ;
Lange, Christoph ;
Nahid, Payam ;
Fourie, Bernard ;
Ndjeka, Norbert ;
Nunn, Andrew ;
Migliori, G. B. ;
Udwadia, Zarir F. ;
Horsburgh, C. Robert, Jr. ;
Churchyard, Gavin J. ;
Menzies, Dick ;
Hesseling, Anneke C. ;
Seddon, James A. ;
Low, Marcus ;
Keshavjee, Salmaan ;
Nuermberger, Eric ;
McIlleron, Helen ;
Fennelly, Kevin P. ;
Jindani, Amina ;
Jaramillo, Ernesto ;
Padayatchi, Nesri ;
Barry, Clifton E., III .
LANCET RESPIRATORY MEDICINE, 2019, 7 (09) :820-826
[8]  
Dheda K, 2017, LANCET RESP MED, V5, P291, DOI [10.1016/s2213-2600(17)30079-6, 10.1016/S2213-2600(17)30079-6]
[9]   Integration of PET/CT Radiomics and Semantic Features for Differentiation between Active Pulmonary Tuberculosis and Lung Cancer [J].
Du, Dongyang ;
Gu, Jiamei ;
Chen, Xiaohui ;
Lv, Wenbing ;
Feng, Qianjin ;
Rahmim, Arman ;
Wu, Hubing ;
Lu, Lijun .
MOLECULAR IMAGING AND BIOLOGY, 2021, 23 (02) :287-298
[10]   The tree-in-bud sign [J].
Eisenhuber, E .
RADIOLOGY, 2002, 222 (03) :771-772