Compressed Hermite-Gaussian differential single-pixel imaging

被引:6
作者
Huang, Guancheng [1 ]
Shuai, Yong [2 ]
Ji, Yu [1 ]
Zhou, Xuyang [1 ]
Li, Qi [1 ]
Liu, Wei [3 ]
Gao, Bin [4 ]
Liu, Shutian [1 ]
Liu, Zhengjun [1 ]
Li, Yutong [1 ]
机构
[1] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 518055, Peoples R China
[4] Heilongjiang Univ, Coll Data Sci & Technol, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Image quality - Pixels - Silicon;
D O I
10.1063/5.0203423
中图分类号
O59 [应用物理学];
学科分类号
摘要
Traditional single-pixel imaging (SPI) encounters challenges such as high sampling redundancy and poor imaging quality, constraining its widespread application. Despite a range of orthogonal modulation modes have been employed in structured illumination to enhance imaging performance, some encoding issues still persist in information sampling, impeding the further progression of SPI. We propose an SPI method based on orthogonal Hermite-Gaussian (HG) moments, achieving improved imaging reconstruction through differential modulation of HG basis patterns and linear weighting of acquired intensity. Both simulations and experiments confirm superior imaging quality and computation efficiency of proposed Hermite-Gaussian single-pixel imaging (HG-SI), especially at low-measurement levels. Moreover, we incorporate compressed sensing algorithms within the framework of HG-SI, integrating moments-based sampling strategies to optimize imaging capability under sparse measurements. Our research underscores the effectiveness of HG modulation in SPI reconstruction, enabling high-quality outcomes via compressed sampling. This advancement propels the investigation of optical field modulation modes within SPI and holds promise in offering a universal solution for weak-intensity and non-visible light microscopy.
引用
收藏
页数:8
相关论文
共 35 条
[1]   NESTA: A Fast and Accurate First-Order Method for Sparse Recovery [J].
Becker, Stephen ;
Bobin, Jerome ;
Candes, Emmanuel J. .
SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (01) :1-39
[2]   Single-pixel imaging via compressive sampling [J].
Duarte, Marco F. ;
Davenport, Mark A. ;
Takhar, Dharmpal ;
Laska, Jason N. ;
Sun, Ting ;
Kelly, Kevin F. ;
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) :83-91
[3]   Principles and prospects for single-pixel imaging [J].
Edgar, Matthew P. ;
Gibson, Graham M. ;
Padgett, Miles J. .
NATURE PHOTONICS, 2019, 13 (01) :13-20
[4]   Differential Ghost Imaging [J].
Ferri, F. ;
Magatti, D. ;
Lugiato, L. A. ;
Gatti, A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[5]   Single-pixel imaging 12 years on: a review [J].
Gibson, Graham M. ;
Johnson, Steven D. ;
Padgett, Miles J. .
OPTICS EXPRESS, 2020, 28 (19) :28190-28208
[6]   Single pixel imaging at megahertz switching rates via cyclic Hadamard masks [J].
Hahamovich, Evgeny ;
Monin, Sagi ;
Hazan, Yoav ;
Rosenthal, Amir .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   Single-pixel imaging with neutrons [J].
He, Yu-Hang ;
Huang, Yi-Yi ;
Zeng, Zhi-Rong ;
Li, Yi-Fei ;
Tan, Jun-Hao ;
Chen, Li-Ming ;
Wu, Ling-An ;
Li, Ming-Fei ;
Quan, Bao-Gang ;
Wang, Song-Lin ;
Liang, Tian-Jiao .
SCIENCE BULLETIN, 2021, 66 (02) :133-138
[8]   High-resolution sub-sampling incoherent x-ray imaging with a single-pixel detector [J].
He, Yu-Hang ;
Zhang, Ai-Xin ;
Li, Ming-Fei ;
Huang, Yi-Yi ;
Quan, Bao-Gang ;
Li, Da-Zhang ;
Wu, Ling-An ;
Chen, Li-Ming .
APL PHOTONICS, 2020, 5 (05)
[9]   INVARIANT IMAGE RECOGNITION BY ZERNIKE MOMENTS [J].
KHOTANZAD, A ;
HONG, YH .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (05) :489-497
[10]   Single-pixel imaging using discrete Zernike moments [J].
Lai, Wenchang ;
Lei, Guozhong ;
Meng, Qi ;
Shi, Donfeng ;
Cui, Wenda ;
Ma, Pengfei ;
Wang, Yan ;
Han, Kai .
OPTICS EXPRESS, 2022, 30 (26) :47761-47775