Multi-Physics Modeling of Melting-Solidification Characteristics in Laser Powder Bed Fusion Process of 316L Stainless Steel

被引:3
|
作者
Shan, Xiuyang [1 ]
Pan, Zhenggao [2 ]
Gao, Mengdi [1 ]
Han, Lu [1 ]
Choi, Joon-Phil [3 ]
Zhang, Haining [2 ,4 ]
机构
[1] Suzhou Univ, Sch Mech & Elect Engn, Suzhou 234000, Peoples R China
[2] Suzhou Univ, Sch Informat & Engn, Suzhou 234000, Peoples R China
[3] Korea Inst Machinery & Mat, Dept Printing 3D, Daejeon 34103, South Korea
[4] Nanyang Technol Univ, Sch Mech & Aerosp, Singapore 639798, Singapore
关键词
laser powder bed fusion; finite volume method; 316L stainless steel; temperature distribution; keyhole depth; MECHANICAL-PROPERTIES; STRESS-FIELDS; MICROSTRUCTURE; SIMULATION; BEHAVIOR; TEMPERATURE; PARAMETERS;
D O I
10.3390/ma17040946
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the laser powder bed fusion process, the melting-solidification characteristics of 316L stainless steel have a great effect on the workpiece quality. In this paper, a multi-physics model was constructed using the finite volume method (FVM) to simulate the melting-solidification process of a 316L powder bed via laser powder bed fusion. In this physical model, the phase change process, the influence of temperature gradient on surface tension of molten pool, and the influence of recoil pressure caused by the metal vapor on molten pool surface were considered. Using this model, the effects of laser scanning speed, hatch space, and laser power on temperature distribution, keyhole depth, and workpiece quality were studied. This study can be used to guide the optimization of process parameters, which is beneficial to the improvement of workpiece quality.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fuzzy process optimization of laser powder bed fusion of 316L stainless steel
    Ponticelli, Gennaro Salvatore
    Venettacci, Simone
    Giannini, Oliviero
    Guarino, Stefano
    Horn, Matthias
    PROGRESS IN ADDITIVE MANUFACTURING, 2023, 8 (03) : 437 - 458
  • [2] Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L
    Kurdi, Abdulaziz
    Tabbakh, Thamer
    Basak, Animesh Kumar
    MATERIALS, 2023, 16 (17)
  • [3] Corrosion Fatigue Characteristics of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Gnanasekaran, Balachander
    Song, Jie
    Vasudevan, Vijay
    Fu, Yao
    METALS, 2021, 11 (07)
  • [4] Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process
    Kascak, Lubos
    Varga, Jan
    Bidulska, Jana
    Bidulsky, Robert
    MATERIALS, 2023, 16 (24)
  • [5] Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder bed fusion
    Han, Wei
    Fang, Fengzhou
    FRONTIERS OF MECHANICAL ENGINEERING, 2021, 16 (03) : 580 - 592
  • [6] Evolution of 316L stainless steel feedstock due to laser powder bed fusion process
    Heiden, Michael J.
    Deibler, Lisa A.
    Rodelas, Jeff M.
    Koepke, Josh R.
    Tung, Dan J.
    Saiz, David J.
    Jared, Bradley H.
    ADDITIVE MANUFACTURING, 2019, 25 : 84 - 103
  • [7] Ultrasonic nondestructive evaluation of laser powder bed fusion 316L stainless steel
    Kim, Changgong
    Yin, Houshang
    Shmatok, Andrii
    Prorok, Barton C.
    Lou, Xiaoyuan
    Matlack, Kathryn H.
    ADDITIVE MANUFACTURING, 2021, 38
  • [8] Applications of Wrought Austenitic Stainless Steel Corrosion Testing to Laser Powder Bed Fusion 316L
    Macatangay, Duane Armell T.
    Conrades, Jenna M.
    Brunner, Keegan L.
    Kelly, Robert G.
    CORROSION, 2022, 78 (01) : 13 - 24
  • [9] Process Optimization and Microstructure Analysis to Understand Laser Powder Bed Fusion of 316L Stainless Steel
    Vallejo, Nathalia Diaz
    Lucas, Cameron
    Ayers, Nicolas
    Graydon, Kevin
    Hyer, Holden
    Sohn, Yongho
    METALS, 2021, 11 (05)
  • [10] Mechanical properties and microstructural characteristics of 316L stainless steel fabricated by laser powder bed fusion and binder jetting
    Xu, Mengchen
    Guo, Haowei
    Wang, Yufeng
    Hou, Yongzhao
    Dong, Zhichao
    Zhang, Lijuan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 : 4427 - 4439