INITIAL TAYLOR-MACLAURIN COEFFICIENT BOUNDS AND THE FEKETE-SZEG ÖPROBLEM FOR SUBCLASSES OF m-FOLD SYMMETRIC ANALYTIC BI-UNIVALENT FUNCTIONS

被引:0
作者
Jadhav, S. D. [1 ,2 ]
Patil, A. B. [3 ]
Wani, I. A. [1 ,2 ]
机构
[1] Sandip Univ, Dept Math, Nasik, Maharashtra, India
[2] NK Orchid Coll Engn & Technol, Gen Engn Dept, Solapur, Maharashtra, India
[3] AISSMS Coll Engn, Dept Year Engn 1, Pune, Maharashtra, India
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2024年 / 14卷 / 01期
关键词
Analytic function; univalent function; bi-univalent function; coefficient bound; m-fold symmetric function; Fekete-Szego functional;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce two new subclasses of the m-fold symmetric, analytic and bi-univalent function class sigma m defined in the open unit disk D1 := {z : z is an element of C and |z| < 1}. These two subclasses are denoted by S-Sigma m (alpha) and S*(Sigma m )(beta). For the functions f belong to both of these subclasses, we obtain estimates on the first two Taylor-Maclaurin coefficients |a(m+1)| and |a(2m+1)|. Also, we obtain estimate on the Fekete-Szego functional |a(2m+1) - ka(m+1)(2)|, k E R. It is interesting to see that the geometrical similarities in these two subclasses also reflects in their coefficient estimates. Further, we pointed out interconnection of these results with some of the earlier known results.
引用
收藏
页码:185 / 196
页数:12
相关论文
共 31 条
[1]   Argument and Coefficient Estimates for Certain Analytic Functions [J].
Alimohammadi, Davood ;
Cho, Nak Eun ;
Adegani, Ebrahim Analouei ;
Motamednezhad, Ahmad .
MATHEMATICS, 2020, 8 (01)
[2]   ON SOME SUBCLASSES OF M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS [J].
Altinkaya, Sahsene ;
Yalcin, Sibel .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2018, 67 (01) :29-36
[3]  
[Anonymous], 1962, Michigan Math. J.
[4]  
Brannan D.A., 1980, Aspects of contemporary complex analysis
[5]  
Brannan D. A., 1988, Studia Univ. Babes-Bolyai Math., V31, P53, DOI DOI 10.1016/B978-0-08-031636-9.50012-7
[6]  
Bulut S., 2013, NOVI SAD J MATH, V43, P59
[7]   Comprehensive subclass of m-fold symmetric bi-univalent functions defined by subordination [J].
Bulut, Serap ;
Salehian, Safa ;
Motamednezhad, Ahmad .
AFRIKA MATEMATIKA, 2021, 32 (3-4) :531-541
[8]  
Duren P. L., 1983, Univalent Functions, Grundlehren der Mathematishen Wissenschaften
[9]   New subclasses of bi-univalent functions [J].
Frasin, B. A. ;
Aouf, M. K. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (09) :1569-1573
[10]  
Goodman A. W., 1979, Int. J. Math. Math. Sci., V2, P163, DOI 10.1155/S016117127900017X